
Trumping the Elephant: Fast Side-Channel

Key-Recovery Attack against Dumbo

Louis Vialar
louis@louisvialar.me

EPFL, Kudelski Security Research Team

Abstract. In this paper, we present an efficient side-channel key re-
covery attack against Dumbo, the 160-bit variant of NIST lightweight
cryptography contest candidate Elephant. We use Correlation Power
Analysis to attack the first round of the Spongent permutation during
the absorption of the first block of associated data. The full attack runs
in about a minute on a common laptop and only requires around 30
power traces to recover the entire secret key on an ARM Cortex-M4
microcontroller clocked at 7.4MHz. This is, to the best of our knoweledge,
the first attack of this type presented against Elephant.

1 Introduction

Lightweight Cryptography (LWC) is an area of cryptography that
studies and develops cryptographic primitives for resource-constrained
devices, such as smart sensors, smart cards or RFID tags. These devices
need to communicate in a secure fashion, and therefore need to use
cryptographic protocols, however traditional protocols intended for desktop
and mobile processors consume too much power and require too much
memory for an embedded system.

In 2017, National Institute of Standards and Technology (NIST) pub-
lished a report [13] on the state of the field, in particular regarding
already-existing NIST cryptographic standards, which was followed in
2018 by a Call for Algorithms [7] for lightweight symmetric authenticated
ciphers and hash functions, initiating the NIST Lightweight Cryptography
project (NIST LWC), a standardization process for what will become the
equivalent(s) of AES-GCM [9,14] and SHA-3 [10] for resource-constrained
devices. While the main objective for the submissions is to be efficient
both in terms of timing, throughput and power consumption, resistance
to side-channel analysis (SCA) is also an evaluation criterion. Indeed, if
a smart device using a symmetric cipher is compromised (or if the user
is the adversary, as with smart cards [18]), the secret key should remain
inaccessible.



2 Trumping the Elephant

The symmetric authenticated cipher Elephant [19] is a finalist to
this NIST standardization project. Elephant is based on Spongent [4], a
lightweight hash function, and has a variant that is based on Keccak [3],
the family of hash functions that led to SHA-3.

In this paper, we introduce a side-channel attack based on Correlation
Power Analysis (CPA) [6] against the 160-bit variant of Elephant, based
on Spongent and dubbed “Dumbo”. The rest of this paper is structured
as follows: in the first section, we present the relevant state of the art. In
the second section, we introduce the Dumbo cipher and its underlying
permutation, Spongent-π[160]. Then, in the third section, we introduce our
side-channel attack on Dumbo. Finally, in the fourth section, we present
experimental results of our attack on an ARM Cortex-M4 microcontroller.

1.1 Notations used in this paper

In the rest of this paper, we define {0, 1}n the set of n-bit bitstrings
for some n ∈ N and {0, 1}⋆ the set of bitstrings of arbitrary length. We
denote the length of bitstring X ∈ {0, 1}⋆ as |X| and we denote with

X0, X1, . . . , Xl−1 the l = ⌈ |X|
160⌉ blocks of size 160 bits (20 bytes) of X,

where the last block is appended with 0s. We designate by bit i (or ith

bit) the bth rightmost bit of the Bth leftmost byte of bitstring X, where
i = 8 ·B + b. We denote X[i] the ith bit of X, and X[a:b] the substring of
X that starts at bit a (inclusive) and ends at bit b (exclusive).

The concatenation of two bitstrings A and B is denoted as A‖B, their
bitwise exclusive or is denoted as A⊕B, and their bitwise and is denoted
as A&B. X ≪ i (resp. X ≪ i) represent a shift (resp. rotation) of X to
the left over i positions. X ≫ i and X ≫ i represent the same operations
to the right.

We denote with 0n the bitstring made of n zeroes, and we denote the
random sampling of a bitstring A of length n with A $← {0, 1}n.

2 Related work

Since the launch of the NIST standardization process, researchers
have studied the implementation security of the candidates. For instance,
CAESAR’s “lightweight applications” winner and NIST finalist Ascon [8]
was found to be vulnerable to two side-channel key recovery attacks by
Ramezanpour et al. in [16]: a passive attack based on deep learning, called
SCARL, and an active fault injection analysis attack. The hardware imple-
mentation of NIST finalist GIFT [2] has also been found to be vulnerable



L. Vialar 3

to a SCA attack by Hou et al. in [12], and the software implementation
was also found to be vulnerable to a side-channel assisted differential
cryptanalysis attack in [5], allowing key recovery in only 36 encryptions.

Side-channel attacks are not a mere theoretical threat, and can have
real world consequences. In this respect, a SCA attack against AES-GCM
was for example used by Ronen et al. in [17] to extract the secret keys used
by Philips to sign the firmware of their smart light-bulbs. This enabled
the attackers to build a worm that spreads from an infected object to
another wirelessly. More recently, an electromagnetic CPA attack was
used successfully to recover AES secret-keys in Apple’s CoreCrypto by
Haas et. al in [11].

To the best of our knowledge, our attack is the first attack of this type
presented against Dumbo or any other Elephant instance.

3 The Dumbo NIST LWC Candidate

Dumbo is one of the three variants of NIST LWC candidate Ele-
phant [19], and is the primary member of the submission. Elephant is a
cryptographic mode of operation that uses a pseudo-random permutation
P to build a symmetric cipher. It uses a 16-bytes (128 bits) secret key K

for encryption and authentication and a 12-bytes (96 bits) nonce N . It
is authenticated, with a 64-bits authentication tag T that authenticates
both the ciphertext C and the optional associated data A.

In Dumbo, the underlying permutation is Spongent-π[160], the 80
rounds Spongent-π permutation of the Spongent lightweight hash function
(introduced by Bogdanov et al. in [4]) with a 20-bytes (160 bits) long
state. The two other variants of this cipher are Jumbo (using Spongent-π
with 90 rounds and a 22-bytes long state, Spongent-π[176]) and Delirium
(replacing Spongent with a reduced version of the permutation used in
Keccak [3], and using a 25-bytes long state). In the next sections, we will
describe the design of Dumbo.

3.1 The Spongent-π[160] Permutation

Spongent-π[160] is a permutation described by Bogdanov et al. in [4]. In
the rest of the paper, we denote as P : {0, 1}160 → {0, 1}160 the 80-round
Spongent permutation defined in Algorithm 1, where:

— rev is a function that reverses the order of the bits in its input.
— sBoxLayer is a function that applies the {0, 1}4 → {0, 1}4 substi-

tution box defined in Table 1 to all nibbles of its input. In the



4 Trumping the Elephant

reference implementation, it is applied on two nibbles at a time by
using an extended {0, 1}8 → {0, 1}8 look-up table.

— pLayer is a function that moves bit j from the input to bit pL(j)
in the output, such that

pL(j) =

{

40j mod 159 if j < 159,

159 if j = 159.

— lfsr represents the computation of one cycle of the 7-bit LFSR
defined by the primitive polynomial p(x) = x7 + x6 + 1. lfsr(c) =
(c[0:6] ≪ 1)‖(c[6] ⊕ c[5]).

Input: X, a 160-bits block of data
Output: X, a 160-bits block of data updated by the permutation

1: c← 0b1110101

2: for i = 0, . . . , 79 do

3: X ← X ⊕ (0153‖c)⊕ rev(0153‖c)
4: X ← sBoxLayer(X)
5: X ← pLayer(X)
6: c← lfsr(c)

return X

Algorithm 1. The Spongent-π[160] permutation

X 0 1 2 3 4 5 6 7 8 9 A B C D E F

SBox(X) E D B 0 2 1 4 F 7 A 8 5 9 C 3 6

Table 1. the Spongent S-Box

Invertibility of P While Elephant does not require P to be invertible to
encrypt plaintexts or to decrypt ciphertexts, we leverage its invertibility
in our key-recovery attack.

We notice that all functions in P can be inverted. The inverse of the
exclusive or operation is the exclusive or operation itself. The sBoxLayer

is inverted by swapping the two lines in the substitution table presented
before and reordering columns accordingly. The pLayer is inverted by
building the bitstring in reverse order: instead of moving bit i to position
40i mod 159, we move bit 40i mod 159 to position i (for i < 159). Finally,
the LFSR counter is inverted by computing its formula in reverse: the bit



L. Vialar 5

that was removed can be computed from the value of the other bits in the
counter and of the bit that was generated from it.

Because of this, we can easily compute the inverse of P by starting the
counter c to its value after 80 rounds (127), then by computing successively
all the inverse operations of each round in reverse order. First, we apply
the inverse LFSR on c, then we inverse the pLayer, the sBoxLayer, and
finally we add the counter to the state.

3.2 The Dumbo Mode of Operation

In this section, we describe on a high level the process used to encrypt
and authenticate a message in Dumbo. The decryption process is not
precisely described but naturally follows from the encryption process.

Before encryption, the associated data and message lengths are not
necessarily multiples of the block size. Therefore, the associated data and
message are padded by adding a 0x01 byte, followed by as many 0x00

bytes as needed to complete the block. The empty message (i.e. M s.t.
|M | = 0) is padded in the same way.

The encryption of the ith message block Mi with nonce N is computed
as follows (i < lM ):

Ci = mask
i,1
K ⊕ P (mask

i,1
K ⊕ (N‖064))⊕Mi

Similarly, decryption is computed using the same operation by swap-
ping Ci and Mi.

The authentication tag is computed iteratively as follows:

1. The tag buffer T is initialized with the nonce concatenated with
the first eight bytes of the associated data (A0).

2. For each remaining 20-byte block of associated data Ai (0 < i < lA),
the tag buffer is updated as
T ← T ⊕mask

i,0
K ⊕ P (mask

i,0
K ⊕Ai).

3. For each ciphertext block Ci, the tag buffer is updated as
T ← T ⊕mask

i,2
K ⊕ P (mask

i,2
K ⊕ Ci).

4. The tag buffer is updated by computing
T ← mask

0,0
K ⊕ P (T ⊕mask

0,0
K ).

5. The first eight bytes of the tag buffer T are returned as the tag.

The entire encryption and authentication procedure is depicted in
Figure 1.

We can notice that the key doesn’t appear directly in this encryption
procedure: it only appears as a parameter to the masking function mask

a,b
K .

The mask
a,b
K function will be described in the next sub-section.



6 Trumping the Elephant

mask
0,1

K P

N‖064

M0

C0

. . . mask
lM −1,1

K P

N‖064

MlM −1

ClM −1

mask
1,0

K P

A1

N‖A0

. . .

. . .

mask
lA−1,0

K P

AlA−1

mask
0,2

K P

C0

. . .

. . .

mask
lC −1,2

K P

ClC −1

mask
0,0

K P

T

Fig. 1. Sketch of the Encryption and Authentication procedure in Dumbo, with
the attack point highlighted



L. Vialar 7

The Masking Functions The mask
a,b
K functions are defined for b =

{0, 1, 2} as follows:

— mask
a,0
K = lfsra(P(K‖032))

— mask
a,1
K = lfsra(P(K‖032))⊕ lfsra+1(P(K‖032))

— mask
a,2
K = lfsra−1(P(K‖032))⊕ lfsra+1(P(K‖032))

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19

≪ 3 ≪ 7 ≫ 7

Fig. 2. The Dumbo LFSR

lfsra denotes a successive applications of the LFSR pictured in Figure 2
in which each Si corresponds to one byte of the state, starting with the
leftmost byte S0. The state of the LFSR is initialized to P(K‖032), also
called expandedKey.

As described in the previous subsection, mask
a,0
K is used to process the

associated data during tag generation, mask
a,1
K is used to encrypt plaintext

blocks, and mask
a,2
K is used to process the ciphertext blocks during tag

generation.

We note that the LFSR used in the masking function is invertible,
which means that it is possible to recover mask

a−1,0
K from mask

a,0
K . In other

words, it is easy to recover expandedKey from mask
1,0
K . Given mask

1,0
K , we

simply shift the bytes to the right and compute expandedKey0 as follows:

expandedKey0 = (mask
1,0
K 2 ≪ 7)&(mask

1,0
K 12 ≫ 7)⊕mask

1,0
K 19

In the next section, we demonstrate an attack that recovers mask
1,0
K

using power analysis. Using that, we can then inverse the LFSR to recover
expandedKey and finally inverse P to recover the key.

4 Our proposed attack

In this section, we describe how we use a CPA attack [6] against the
first round of P during the computation of the authentication tag to
recover mask

1,0
K , and therefore K.



8 Trumping the Elephant

We recall that during the computation of the tag, the first block of
associated data (after the first eight bytes) A1 is absorbed by computing
mask

1,0
K ⊕ P (A1 ⊕mask

1,0
K ). We notice that the permutation P receives a

20-byte block of user-controlled data (A1), which is bitwise XORed with
the secret we want to recover (mask

1,0
K ). Our target for this attack is the

first round of this particular invocation of the permutation P .

If we combine the exclusive or operation and the beginning of the first
round, we can construct a model that, given the ith byte of mask

1,0
K and

of A1, outputs the value of the ith byte of the state after the sBoxLayer

in the first round of P . We denote this model as Model(a, k, i), where
i ∈ 0 . . . 19 is the position of the byte, a is the ith byte of A1 and k is the
ith byte of mask

1,0
K . This model is described in Algorithm 2.

Input: a, a 8-bit portion of the associated data
Input: k, a 8-bit portion of the key
Input: i, the byte of the state to compute
Output: S, byte i of the state after the first round sBoxLayer
S ← a⊕ k ⊲ First operation of the first round: add c to the first and last bytes
if i=0 then

S ← S ⊕ 0x75 ⊲ 0b01110101

else if i=19 then

S ← S ⊕ 0xae ⊲ 0b1110101 in reverse order

S ← SBox(S) ⊲ Second operation of the first round: sBoxLayer return S

Algorithm 2. Model(a, k, i)

What is interesting with this model is that if we have an oracle that
can retrieve the value of the ith byte of the state at this point in a real
invocation of the cipher with a known associated data byte a, we can
easily find k by running the model with all possible values for k ∈ {0, 1}8

and stopping when it gives the correct output. Doing this again for all
values of i recovers the entire mask

1,0
K in at most 28 · 20 attempts.

In our case, this oracle does not exist, but we can use CPA with this
model to approach it. The idea behind CPA is to capture power traces of
the target device encrypting with multiple known arbitrary values of a,
then to compute the model with all possible values for k and all values we
used for a to see which k predicts best the power consumption observed on
the device. This works because the power consumption of a cryptographic
device depends on the data that is being processed on that device. We
will now describe the process in more detail.



L. Vialar 9

4.1 Recovery of mask
1,0
K

To perform a CPA attack on a cryptographic device, we need a general
idea of the relation between the data processed by the device and its
power consumption. In our case, we assume that the power consumption
is proportional to the Hamming weight (the number of bits set to 1) of
the data read from or written to memory.

The recovery of mask
1,0
K by CPA works as follows:

1. We generate an arbitrary number n of nonce and associated data
pairs (Nj , Aj) with j ∈ 0 . . . n − 1, Nj $ ← {0, 1}12 and Aj $ ←
{0, 1}28. Only the last 20 bits of Aj really need to be random, but
for simplicity we generate all these values randomly.

2. We encrypt each of these pairs on the attacked device and record
its power consumption, which we denote as Tj ; a vector of m power
samples. All Tj have the same length and are synchronized on the
same operation (they are aligned).

3. Using this data, we can now run the CPA on a computer. We
describe the procedure to recover the ith byte of mask

1,0
K . We denote

aj the ith byte of Aj (aj = (Aj)i).

1. For each candidate value k ∈ {0, 1}8 and for each j, we
compute the Hamming weight of the model prediction as
(Hk)j = HammingWeight(Model(aj , k, i))

2. Then, we group each position in the power traces t ∈ 0 . . . m−1
as vectors Pt = ((T0)t, . . . , (Tn−1)t)

3. For each k and each t, we compute the Pearson Correlation

Coefficient [6] between samples Hk and Pt as

ρk,t =
cov(Hk, Pt)

σHk
· σPt

4. For each candidate k, we find the maximal correlation coefficient
ρ̄k = maxt(ρk,t)

5. We sort candidates by decreasing ρ̄k. The most likely value for
the ith byte of mask

1,0
K is arg maxk(ρ̄k).

In general terms, this means that for each timestamp we compute the
correlation between the power consumption samples at that timestamp
and the predictions of our model given a candidate for the key byte k.
If the candidate is the correct value of (mask

1,0
K )i, we expect that all the

predictions of the model will be correct and correspond to a value that is
processed during computation in the cryptographic device, which leads



10 Trumping the Elephant

to a high correlation coefficient. On the other hand, while incorrect keys
will sometimes give the same Hamming weight as the correct key (by
the pigeonhole principle), computing the model with an incorrect key
will most of the time return a value for which the Hamming weight is
uncorrelated to the observed power consumption, which leads to a lower
correlation coefficient. By doing this on all possible values for (mask

1,0
K )i

and taking the highest correlation coefficient, we recover the correct value.

By running the CPA for each byte i of mask
1,0
K , we get a sorted list

of potential values that we call K̂i. We denote (K̂i)0 the value with the
highest correlation and (K̂i)255 the value with the lowest correlation. We
can derive a potential value for mask

1,0
K K̂ = (K̂0)0‖ . . . ‖(K̂19)0 and use

this value to recover a potential value for expandedKey by inverting the
LFSR, as described in Section 3.2. Then, we can inverse P to recover a
potential key.

4.2 Verification of key candidates

To verify that this key candidate is correct, we recall that
expandedKey = P (K‖032). This means that when we compute
P −1(expandedKey), we expect to recover K‖032, and we can verify that
expandedKey is correct by making sure the four last bytes of the result
we obtained are indeed 0x00. Since P is pseudo-random, the likelihood of
an incorrect expandedKey being inverted to a byte-array ending with four
0x00 bytes is 2−32, which we consider low enough for this attack. If the
attacker wants extra confidence, it is possible to verify the obtained key
by obtaining a known (plaintext, nonce, ciphertext) triple on the attacked
device, then trying to re-encrypt the plaintext with the obtained key and
making sure it gives the same ciphertext.

Because CPA is a statistical method, it can be imprecise, and sometimes
the potential mask

1,0
K we recover is incorrect, because the correct value for

byte i is (K̂i)1 and not (K̂i)0. To account for this, we suggest a form of
exhaustive search among potential keys. To make this analysis fast, we
get rid of unlikely candidates and only keep (K̂i)0 to (K̂i)3 for all i. The
number of candidates kept is arbitrarily chosen and may vary depending
on the attacked device, but it is important to keep this number small.
Then, we proceed to the exhaustive search by making a guess on the
number of errors. First, we try to find the key by assuming only one
byte of mask

1,0
K is wrong (i.e. ∃j ∈ 0 . . . 19 s.t. (mask

1,0
K )j 6= (K̂j)0 and

(mask
1,0
K )i = (K̂i)0∀i 6= j). We ignore what j is, so we iterate on all possible

values of j, and for each we try alternative values (K̂j)1 to (K̂j)3, until



L. Vialar 11

we find the correct key. If no correct key is found this way, we proceed
in the same way but this time supposing thats there are two incorrect
bytes, then three incorrect bytes. We could go on further, but we stop at
three to keep the runtime in acceptable bounds, since the runtime of the
exhaustive search with e errors is 4e ·

(20
e

)

checks.

5 Experimental results

In this section, we present the experimental results of our Python
implementation on this attack on a ChipWhisperer [15] board.

5.1 Our Setup and Methodology

We confirmed that our attack works by implementing it on the Chip-
Whisperer [15] framework, using the LASCAR [1] toolbox for the optimized
CPA computation. We chose this framework because it combines a target
processor and an Analog to Digital Converter (ADC) on the same circuit
board, making the attack easy to carry out and demonstrate. Another
advantage of using this framework is that it makes the attack simple
to reproduce by anyone, as the board used to demonstrate it is widely
available. We also published the source code of our attack on GitHub to
facilitate the reproduction in the kudelskisecurity/nist-lwc-power-analysis
repository.

The ChipWhisperer board we used is the ChipWhisperer Lite ARM kit,
containing a CW303 32-bit STM32F303RCT6 ARM Cortex-M4 microcon-
troller as the attacked device and a CW1173 ChipWhisperer-Lite capture
board. The microcontroller clock is set at 7.4 MHz, and the sampling
frequency is set to 29.6 MHz. The ADC has a 10-bit resolution and a 24k
sample buffer.

The implementation we attacked is the reference implementation pro-
vided by the cipher authors as part of their submission to the NIST LWC,
written in C. It was compiled with the ChipWhisperer toolchain, with
an -O3 optimization parameter. The compilation script and instructions
are provided with the attack source code. While this implementation is
an ideal case for our attack, other unpublished attacks on NIST LWC
candidates show us that optimized versions written in assembly can usually
still be attacked by using more traces. We are therefore confident that
our attack would still work on alternative implementations as long as no
power analysis countermeasures are implemented.

To validate our number of power traces, we ran our attack 200 times
with a number of power traces set between 25 and 40. We did not test

https://github.com/kudelskisecurity/nist-lwc-power-analysis


12 Trumping the Elephant

any lower value because of the very high failure rate. Each power traces
contains precisely 24’000 voltage samples, which we only capture after the
974’000th sample. This attack point was selected by visual inspection of
complete power traces to find the targeted S-Box operation. We carried
the attack on a common laptop with an Intel Core i7-8565U CPU with
four cores and a 1.8GHz base frequency. Since the laptop was running
other processes, the exact time of the attacks is imprecise, but the goal
of the benchmark was to give a general idea of the runtime. To limit the
effects of multitasking on the results, we alternated the number of traces
when running the benchmark: instead of running the attack 200 times for
25 traces, then for 26 traces, and so on, we ran the attack once for each
number of traces, and then repeated this process a total of 200 times.

5.2 Results

Fig. 3. Success rate by maximal num-
ber of errors

Fig. 4. Runtime of an entire attack
attempt

The success rate (that is the number of successful key recoveries over
the number of attempted key recoveries) was evaluated without any kind
of exhaustive search step: we only evaluated the success rate of the CPA
itself. The results are displayed in Figure 3. We can see that the CPA
already recovers the correct mask in more than 90% of the cases when
using more than 35 power-traces (max. 96% for 38 traces). However, it
is also interesting to see by how much the CPA misses when it finds an
incorrect mask. This is what the three other curves display: they show
what the success rate would be if we used an exhaustive search step
with up to 1 (respectively 2, 3) errors. We don’t include in these curves
errors that could not be recovered by the exhaustive search, that is attack



L. Vialar 13

attempts where at least one byte of the mask was not present in the top
four most likely values returned by the CPA. These occur rarely when
using more than 35 traces: only one error of the type was reported for 36
and 37 traces, and 0 for more. They are however more frequent on a lower
number of traces: 28% of attempts with 25 power traces had at least one
byte which could not be recovered by exhaustive search. Overall, we see
that the attack has an almost 100% success rate with more than 35 traces
and an exhaustive search step with up to 3 errors. We stress that this
exhaustive search step is not even used in more than 90% of the attack
attempts with that number of traces.

The performance measurement was done with a rather imprecise
setup (the computer was also working on other tasks) and excluded any
exhaustive search step. It only shows the time it takes to capture the power
traces and to run the analysis, measured using Python’s process_time.
The results are displayed in Figure 4. Overall, we observe that 75% of the
attacks take about 40 seconds or less, for all number of power traces. Only
10% of the attack attempts took more than one minute, and not a single
attempt took more than two minutes.

6 Extending the attack to Jumbo

As we detailed earlier, Elephant has three members: Dumbo, Jumbo
and Delirium. While Delirium uses a different permutation and cannot
be attacked with the same method, Jumbo uses the same permutation
as Dumbo with a different block size. This makes porting our attack to
Jumbo easy.

The main differences between Jumbo and Dumbo are highlighted
below:

— The underlying permutation is Spongent-π[176] instead of Spongent-
π[160]. This means the internal state is 176-bits (22-bytes) long
instead of 160-bits (20-bytes) long. The permutation also has 10
additional rounds.

— The initial value of c in Spongent-π[176] is 0b1000101 instead of
0b1110101 in Spongent-π[160].

— The pLayer is slightly different:

pL(j) =

{

44j mod 175 if j < 175,

175 if j = 175.



14 Trumping the Elephant

— The LFSR used to generate the masks is different. It operates on
22 bytes (instead of 20), and S21 is updated to S0 ≪ 1 ⊕ S3 ≪
7⊕ S19 ≫ 7.

— The number of 0 bits appended to the key to compute the first
mask is 48 instead of 32.

The attack therefore works very similarly, by updating the model to
reflect the changes in the constants and length of the state. We do not
provide a detailed performance analysis of this variant of the attack, but
its source code is included with the other attack.

7 Conclusion

We presented an efficient attack on Dumbo, the 160-bit version and
primary instance of the NIST lightweight candidate Elephant, that can
recover the secret key in about a minute using only 35 power traces. We
described how this attack can be extended to the 176-bit variant of the
cipher, which uses the same underlying permutation.

While we only attacked the software implementation of Dumbo, it
would be interesting to see if hardware implementations of the cipher
are vulnerable to this attack, and if so, how many traces are required to
recover the secret key.

8 Acknowledgements

This work was supported by an internship at the Kudelski Security
Research Team.

We would like to thank Nils Amiet, Aymeric Genêt, Sylvain Pelissier,
Antonio De La Piedra, and Serge Vaudenay for their insightful feedback
and suggestions.

References

1. LASCAR - Ledger’s Advanced Side-Channel Analysis Repository, December 2021.
original-date: 2018-10-31T15:38:09Z.

2. Subhadeep Banik, Sumit Kumar Pandey, Thomas Peyrin, Yu Sasaki, Siang Meng
Sim, and Yosuke Todo. GIFT: A Small Present. Technical Report 622, 2017.

3. Guido Bertoni, Michaël Peeters, Gilles Van Assche, and others. The keccak reference.
2011. Publisher: Citeseer.

4. Andrey Bogdanov, Miroslav Knežević, Gregor Leander, Deniz Toz, Kerem Varıcı,
and Ingrid Verbauwhede. spongent: A Lightweight Hash Function. In David
Hutchison, Takeo Kanade, Josef Kittler, Jon M. Kleinberg, Friedemann Mattern,



L. Vialar 15

John C. Mitchell, Moni Naor, Oscar Nierstrasz, C. Pandu Rangan, Bernhard
Steffen, Madhu Sudan, Demetri Terzopoulos, Doug Tygar, Moshe Y. Vardi, Gerhard
Weikum, Bart Preneel, and Tsuyoshi Takagi, editors, Cryptographic Hardware and
Embedded Systems – CHES 2011, volume 6917, pages 312–325. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2011. Series Title: Lecture Notes in Computer
Science.

5. Jakub Breier, Dirmanto Jap, Xiaolu Hou, and Shivam Bhasin. On Side Channel Vul-
nerabilities of Bit Permutations in Cryptographic Algorithms. IEEE Transactions
on Information Forensics and Security, 15:1072–1085, 2020.

6. Eric Brier, Christophe Clavier, and Francis Olivier. Correlation Power Analysis
with a Leakage Model. In David Hutchison, Takeo Kanade, Josef Kittler, Jon M.
Kleinberg, Friedemann Mattern, John C. Mitchell, Moni Naor, Oscar Nierstrasz,
C. Pandu Rangan, Bernhard Steffen, Madhu Sudan, Demetri Terzopoulos, Dough
Tygar, Moshe Y. Vardi, Gerhard Weikum, Marc Joye, and Jean-Jacques Quisquater,
editors, Cryptographic Hardware and Embedded Systems - CHES 2004, volume
3156, pages 16–29. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004. Series
Title: Lecture Notes in Computer Science.

7. Information Technology Laboratory Computer Security Division. Request for
Nominations for Lightweight Cryptographic Algorithms | CSRC, August 2018.

8. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2, 2019. Published: Submission to Round 1 of the NIST Lightweight
Cryptography project.

9. M J Dworkin. Recommendation for block cipher modes of operation :: GaloisCounter
Mode (GCM) and GMAC. Technical Report NIST SP 800-38d, National Institute
of Standards and Technology, Gaithersburg, MD, 2007. Edition: 0.

10. Morris J. Dworkin. SHA-3 Standard: Permutation-Based Hash and Extendable-
Output Functions. Technical Report NIST FIPS 202, National Institute of Standards
and Technology, July 2015.

11. Gregor Haas and Aydin Aysu. Apple vs. EMA: Electromagnetic Side Channel
Attacks on Apple CoreCrypto. Technical Report 230, 2022.

12. Xiaolu Hou, Jakub Breier, and Shivam Bhasin. DNFA: Differential No-Fault
Analysis of Bit Permutation Based Ciphers Assisted by Side-Channel. Technical
Report 1554, 2020.

13. Kerry A McKay, Larry Bassham, Meltem Sonmez Turan, and Nicky Mouha. Report
on lightweight cryptography. Technical Report NIST IR 8114, National Institute of
Standards and Technology, Gaithersburg, MD, March 2017.

14. National Institute of Standards and Technology. Advanced encryption standard
(AES). Technical Report NIST FIPS 197, National Institute of Standards and
Technology, Gaithersburg, MD, November 2001.

15. Colin O’Flynn and Zhizhang Chen. ChipWhisperer: An Open-Source Platform for
Hardware Embedded Security Research. In Emmanuel Prouff, editor, Constructive
Side-Channel Analysis and Secure Design, volume 8622, pages 243–260. Springer
International Publishing, Cham, 2014. Series Title: Lecture Notes in Computer
Science.

16. Keyvan Ramezanpour, Abubakr Abdulgadir, William Diehl, Jens-Peter Kaps, and
Paul Ampadu. Active and Passive Side-Channel Key Recovery Attacks on Ascon.



16 Trumping the Elephant

17. Eyal Ronen, Adi Shamir, Achi-Or Weingarten, and Colin O’Flynn. IoT Goes
Nuclear: Creating a ZigBee Chain Reaction. In 2017 IEEE Symposium on Security
and Privacy (SP), pages 195–212, May 2017. ISSN: 2375-1207.

18. Adam Shostack and Bruce Schneier. Breaking Up Is Hard To Do: Modeling Security
Threats for Smart Cards. 1999.

19. Tim Beyne, Yu Long Chen, Christoph Dobraunig, and Bart Mennink. Elephant v2.


	Trumping the Elephant

