
Fuzzing Microsoft’s RDP Client using Virtual

Channels

Valentino Ricotta
ricotta.valentino@gmail.com

Thalium

Abstract. The Remote Desktop Protocol (RDP) is a proprietary protocol
designed by Microsoft that allows a user to connect to a remote computer
over the network with a graphical interface. Though server-side security
has often been studied, the security of RDP client applications remains
more peripheral. For all that, the richness of the protocol and the width
of the attack surface make RDP clients valuable fuzzing targets.

This article describes how to leverage the WTS API to setup a fuzzing
architecture for Microsoft’s RDP client based on WinAFL, and suggests a
methodology targeting the Virtual Channels abstraction layer. Through-
out a few channels such as those dedicated to sound redirection, clipboard,
printers or smart cards, several bugs were identified, including two CVEs:
an Information Disclosure and a Remote Code Execution.

1 Introduction

The Remote Desktop Protocol (RDP) is a proprietary protocol designed
by Microsoft that allows a user to connect to a remote computer over
the network with a graphical interface. Its use around the world is very
widespread; some people, for instance, use it often for remote work and
administration.

Although RDP dates back to Windows NT 4.0 (then formerly known
as Terminal Services) and many vulnerabilities have been found in it over
the years, it is in 2014 that researchers from Tripwire, Inc. publish one
of the first works on RDP fuzzing [2]. In 2019, Eyal Itkin of Check Point
Research published work targeting RDP clients in general [5], that led to
16 major vulnerabilities in open-source clients and a path traversal attack
in Microsoft’s client that also impacted the Hyper-V manager.

During a conference talk at Blackhat Europe 2019 [4], Chun Sung
Park, Yeongjin Jang, Seungjoo Kim and Ki Taek Lee explained that they
managed to exploit an RCE inside Microsoft Windows’ RDP client by
fuzzing the Virtual Channels of RDP using WinAFL [6]. We thought they
achieved encouraging results that deserved to be prolonged. The objective

2 Fuzzing Microsoft RDP using Virtual Channels

was to go further, by coming up with a general methodology for attacking
these Virtual Channels that would widen the fuzzing surface.

This work was conducted as part of my second-year engineering intern-
ship at Thalium, where I spent time studying and reverse engineering
Microsoft RDP, learning about fuzzing, and looking for vulnerabilities.

In parallel, in 2021, researchers from CyberArk have published some
of the work they conducted on fuzzing RDP [25] as well. Though they
also used WinAFL and faced similar challenges, their fuzzing approach
somewhat differs from the one presented here. 1

This article first presents a few elements that are necessary to under-
stand how the Remote Desktop Protocol works. Then, it describes the
architecture that was set up and the methodology used for fuzzing Mi-
crosoft’s RDP client with WinAFL. Finally, some results will be presented
in more detail, especially the vulnerabilities that were found.

1.1 Why search for vulnerabilities in the RDP client?

An example of an RDP client attack scenario is given in the Blackhat
Europe 2019 conference talk [4]. The authors’ research was driven by the
idea that North Korean hackers would allegedly carry out attacks through
compromised RDP servers acting as proxies. By setting up a honeypot
to which they would connect, one could “hack them back”, assuming a
vulnerability in the client is known.

Vulnerabilities in the RDP client can also lead to guest-to-host virtual
machine escape attacks in Hyper-V. Indeed, since the Hyper-V manager
internally uses RDP to implement features such as screen sharing, remote
keyboard or synchronized clipboard, it inherits its potential security flaws.

Aside from these motives, most of vulnerability research seems to be
focused on server implementations; CVEs in the RDP client are more
scarce, even though the attack surface is as large as the server’s.

2 Study of the Remote Desktop Protocol

This article only presents a few elements of RDP that are needed to
understand how to fuzz Virtual Channels. Other resources such as blog
articles or the Microsoft specification itself [14, 24] explain the protocol in
more detail.

1. Some major differences are that they implemented multi-input fuzzing, and that
they also fuzzed the RDP server.

Valentino Ricotta 3

Microsoft has its own implementation of RDP (client and server) built
in Windows. There also exist alternate implementations of RDP, such
as the open-source FreeRDP [1]. By default, the RDP server listens on
TCP port 3389. UDP is also supported to improve performance for certain
tasks such as bitmap or audio delivery. In Windows 10, the main file of
interest for most of the client logic is mstscax.dll.

Basic, core functionalities of an RDP client include receiving desktop
bitmaps from the server, and sending keyboard and mouse inputs to the
server. However, a lot of other information can be exchanged one way or
the other: sound, clipboard, support for special types of hardware, etc.
This information goes through what Microsoft call Virtual Channels.

2.1 Virtual Channels

Virtual Channels (or just channels) are an abstraction layer in RDP
used to generically transport data. They can add functional enhancements
to an RDP session. The Remote Desktop Protocol provides multiplexed
management of multiple virtual channels. Each individual channel behaves
according to its own separate logic, specification and protocol. Microsoft
specifies dozens of official channels [7].

The RDP stack consists of several layers, sometimes with multiple
levels of encryption. Virtual Channels operate on the MCS (Multipoint
Communication Service) layer (fig. 1). Thanksfully, Windows provides an
API called the WTS API [20] to interact with this layer, which allows to
open, read from and write to a channel. This comes convenient for writing
a fuzzing harness.

Fig. 1. Remote Desktop Procol stack.

4 Fuzzing Microsoft RDP using Virtual Channels

There are two types of Virtual Channels: static ones and dynamic ones.
Static Virtual Channels (SVC) are negotiated during the connection phase.
They are opened once for the session and are identified by a name up to 8
bytes. By default, the RDP client asks to open the four following SVCs:

— RDPSND: audio redirection from the server to the client;
— CLIPRDR: two-way clipboard redirection/synchronization;
— RDPDR: filesystem redirection (and more. . .);
— DRDYNVC: support for dynamic channels.

Dynamic Virtual Channels (DVC) are built on top of the DRDYNVC

SVC, which manages them. They can be opened and closed on the fly
during an RDP session. They are especially used by developers to create
extensions. Microsoft provides a fair amount of official DVCs (touch and
pen input, geometric rendering, display configuration, telemetry, micro-
phones, webcams, PnP redirection. . .), some of which are automatically
enabled.

In conclusion, both types of channels are great targets for fuzzing. Each
channel behaves independently, has a different protocol parser, different
logic, lots of different structures, and can hide many bugs. What is more,
channels that are open by default are an even more interesting target
risk-wise, because any vulnerability found in these will directly impact
most clients.

3 Architecture for fuzzing the RDP client

Since there was little to no information publicly available about the
fuzzer presented at Blackhat Europe 2019 [4], the choice was made to
implement a new architecture for fuzzing the RDP client. We decided
however to take inspiration from two elements: the use of WinAFL, and
the network-level approach for the harness.

3.1 WinAFL: presentation and choices

WinAFL [6] is a Windows fork of the popular mutational fuzzing tool
AFL [12]. It works by continuously sending and mutating inputs to a target
program in order to make it behave unexpectedly (and hopefully crash).
Mutations are repeatedly performed on samples which must initially come
from a corpus (a set of input files or seeds).

As described in The Art, Science, and Engineering of Fuzzing by
Manès et al. [10], AFL and its descendants are grey-box fuzzers, which
means they are feedback-based or coverage-guided. Coverage-guided fuzzers

Valentino Ricotta 5

instrument the target binary to compute, for each execution, the branch
coverage (for example, which basic blocks were visited). This technique
allows the fuzzer to explore new paths within the target binary, and with
which inputs they are reached.

In order to achieve coverage-guided fuzzing, WinAFL provides several
instrumentation modes: dynamic instrumentation using DynamoRIO,
Intel PT and Syzygy. Because Intel PT has limitations within virtualized
environments and Syzygy is restricted to 32-bit binaries with full PDB
symbols, the adopted mode was DynamoRIO.

DynamoRIO [29] is a dynamic binary instrumentation framework. It
provides an API to deal with black-box targets, which WinAFL can use
to instrument the target binary (in particular, monitor code coverage at
run time).

Finally, when fuzzing, killing and restarting the RDP client each
iteration is unwanted as it would add enormous overhead. To alleviate
that, DynamoRIO provides several persistence modes that dictate how
the fuzzer should exactly loop on the target function:

— Native persistence: measure coverage of the target function, and
on return, reload context and redirect execution back to the start
of the target function;

— In-app persistence: let the program loop naturally, and coverage will
reset each time in the pre_loop_start_handler, inserted right
before the target function;

— “No-loop” mode: similar to in-app persistence, with the advantage
of stopping coverage on return. This mode was found by reading
WinAFL’s codebase and does not seem documented.

The “no-loop” mode was chosen as it seems adapted to the context of
network fuzzing, while still producing code coverage limited to the part
of interest inside the RDP client (the one that handles the channel being
fuzzed). Figure 2 summarizes, in a simplified manner, the fuzzing process
using WinAFL’s “no-loop” mode.

One should also mind the importance of the -thread-coverage option
in DynamoRIO, which limits code coverage measurement to the thread
that triggered the target function. Forgetting this option will negatively
impact the fuzzer’s stability metric, because coverage will include heavy
noise from other threads’s activity in the RDP client, rendering the fuzzing
very random.

GFlags was also enabled with PageHeap [13]. Applying the /full

option on mstscax.dll asks Windows to place an unreachable page at the

6 Fuzzing Microsoft RDP using Virtual Channels

Fig. 2. Fuzzing process with WinAFL in “no-loop” mode.

end of each heap allocation. Therefore, as soon as there is an out-of-bounds
access, the client will crash.

3.2 Setting up WinAFL for network fuzzing

By default, WinAFL writes mutations to a file that should be passed
as an argument to the target binary. The target being a network client,
we can either fuzz it through the network by sending packets, or try
to harness directly the functions inside the client that handle incoming
packets and modify the packets in memory, for instance with a snapshot-
based approach.

The choice was made to make the harness act like a server that sends
mutations to the client over the network. This requires developing a server-
side harness, and then adapting WinAFL so that it redirects the mutations
over to the harness. Although it may seem like it would slow down the
fuzzer, sending mutations over the network is actually not a bottleneck at
all in terms of fuzzing speed (at least locally).

The harness runs in parallel of the RDP server. It listens on a given
TCP port and waits to receive an input mutation. It optionally processes it,
and sends the mutation back to the RDP client through a specified Virtual
Channel. This is easily implemented using the aforementioned WTS API.
Finally, WinAFL is modified to send mutations to the harness via TCP
by changing the write_to_testcase function. The fuzzer architecture is
drawn figure 3.

In the Blackhat Europe 2019 conference talk [4], the authors used two
virtual machines (one for the client and one for the server). Indeed, it is
not normally possible, by design, to connect to a local RDP server on the
same machine. The RDPWrap [26] tool allows to bypass this limitation:
the fuzzer therefore fits in a single virtual machine.

Valentino Ricotta 7

Fig. 3. Architecture of the fuzzer.

4 Fuzzing methodology

The harness is functional, but before actually fuzzing, one needs to
agree on what to attack and which approach to use. This section will
illustrate the different steps with the example of the RDPSND channel
(sound redirection).

4.1 Attacking a channel

Once the target channel is selected, two elements are concretely needed
to start fuzzing: a target offset (address of the target function), and an
initial corpus.

The first step is to read the channel specification provided by Microsoft
(for RDPSND: [15]). It describes the channel’s functioning quite exhaustively,
with all the different message types, structures, protocol diagrams, as well
as many examples of PDU (Protocol Data Unit) hexdumps. These are
great mutation seeds for the fuzzer.

Then, the RDP client can be reverse engineered to locate where in-
coming PDUs in the channel are received and processed. PDB symbols,
strings and magic numbers are often enough to identify these channel
handlers. For instance, in RDPSND, the target method is rather straightfor-
ward (fig. 4). In case it is not enough, one can capture code coverage at
the moment a PDU is sent to the target channel. This can be achieved

8 Fuzzing Microsoft RDP using Virtual Channels

with Frida and frida-drcov [23,30]. The Lighthouse IDA plugin [11] then
allows to visualize the code coverage.

Fig. 4. Target method for the RDPSND channel.

4.2 Different fuzzing strategies

Once the target offset is known, should we start fuzzing naively with
the seeds gathered from the specification?

There is still one main problem that arises: the problem of stateful
fuzzing in a network context. Indeed, the RDP client can be modelled
by a complex state machine. This state machine could be subdivided in
several smaller state machines for each channel, but which would remain
fundamentally complex to characterize.

We suggest two main stategies: a “naive” one, and one that partially
addresses the mentioned problem, but at some cost. However, neither
strategy entirely addresses the stateful fuzzing issue: it was estimated it
would require significant additional work, and the initial plan was to be
able to fuzz many channels with a lesser effort.

Mixed message type fuzzing. This is the “naive” strategy: the seeds
gathered from the specification are used “as is”, and without modifying
the harness any further: it sends back the raw mutations to the client.
Figure 5 describes the structure of an RDPSND PDU header.

Since the mutation seeds include the header, the fuzzer will also mutate
it, including the msgType field. Therefore, the RDP client will receive a lot
of different message types, in a rather random order. This is an interesting

Valentino Ricotta 9

Fig. 5. SNDPROLOG header of an RDPSND PDU.

approach because sending a sequence of PDUs of different types in a
certain order could help the client enter a state in which a bug is triggered.

A drawback of this strategy is that crash analysis becomes more
difficult. Since a larger space of PDUs is covered, and thus a larger space
of states, there is a higher chance that a bug originates from a complex
sequence of states. When WinAFL detects a crash and saves the associated
mutation, there is no guarantee whatsoever that reproducing the bug is
feasible with this mutation only. If the bug does not reproduce, it is
probably because it is rather a sequence of PDUs that crashed the client,
and not just a single PDU. However, understanding which sequence of
PDUs made the client crash is often difficult and requires a more in-depth
analysis.

Fixed message type fuzzing. This time, WinAFL will operate only
on the message’s body. In particular, the msgType will not be mutated,
implying a fuzzing campaign should be started for each individual message
type (there are 13 in RDPSND). For instance, one can target specifically
the “Server Audio Formats and Version” PDUs in RDPSND (figure 6).

This strategy is still vulnerable to the presence of “stateful bugs”,
but generally less than in mixed message type fuzzing, because the state
space is smaller. However, it requires some preparation: cutting the seeds’
headers, and writing a specific wrapper for each channel at harness-level
to reconstruct the header. In certain cases, it may also be useful to identify
the methods in the binary that handle each message type (for instance in
the CLIPRDR channel, where these methods are called asynchronously).

We conclude both fuzzing approaches should be taken into considera-
tion. The first one can find more uncommon bugs, but which are sometimes
very hard to analyze. The second one needs a bit more effort to set up,
but allows to go more in depth in each message type’s logic, and the bugs
found are usually easier to reproduce.

10 Fuzzing Microsoft RDP using Virtual Channels

Fig. 6. RDPSND Server Audio Formats and Version PDU structure.

4.3 Analyzing crashes

As mentioned, analyzing a crash can range from easy to nearly im-
possible. When WinAFL finds a crash, the only thing it does is save the
associated mutation to a file. From there, there are two possibilities:

— the crash is successfully reproduced. In this case, what is only left
is to reverse to understand the root cause, analyze risk, and maybe
grow the crash into a bigger vulnerability;

— the crash cannot be reproduced. In this case, one can try working
their way through “blindly” by dissecting the guilty payload. . .

For analysis purposes, a modification of WinAFL to log more informa-
tion about crashes (exception address, module, timestamp and exception
information) proved to be of great use. This way, even when the crash
cannot be reproduced, one can still locate where the crash occurred. They
usually occur in mstscax.dll, but some bugs may happen in other mod-
ules. It is worth noting a crash in an “unknown module” could mean the
execution flow was redirected.

4.4 Assessing fuzzing quality

Knowing when to stop fuzzing a channel exactly is not an easy task.
As during any fuzzing campaign, the number of paths found over time
always tends to reach a certain plateau. But although a plateau is reached,
waiting a few additional hours could very well lead to a lucky strike in

Valentino Ricotta 11

which a new mutation is found, in turn snowballing into dozens of new
paths.

The main criterion to take into account is code coverage quality. To
help with assessing code coverage quality, a modification in WinAFL adds
an option that saves all the encountered basic blocks at each fuzzing
iteration, and logs them into a file if the iteration produced a new path.
For each new path, the corresponding basic block trace can be converted
in the Mod+Offset format in order to be visualized with Lighthouse [11].

Figure 7 shows Lighthouse’s visualization of the obtained code coverage
for the RDPSND channel. The proportion of blocks hit in each “audio”
function is a good indicator of quality, although it seldom reaches 50%
because there is a large proportion of error-handling blocks that are never
visited.

Fig. 7. Code coverage for the RDPSND channel fuzzing campaign in Lighthouse.

Skimming through the functions, one can assess whether they are
satisfied with the fuzzing campaign. However, this requires having reverse
engineered the channel enough to have a good depiction of its architecture
and inner workings in mind; more specifically, to know what are all the
functions and basic blocks of interest.

5 Results

This section presents some results in a few channels where fuzzing
campaigns were attempted.

Table 1 synthesizes the fuzzing level of each channel and the number
of bugs found. Fuzzing level is a subjective scale to assess how much and

12 Fuzzing Microsoft RDP using Virtual Channels

Channel Description Fuzzing level Bugs

RDPSND Audio redirection 2 1
CLIPRDR Clipboard 1 1
DRDYNVC Dynamic channels manager 0 –
RDPDR Filesystem redirection, printers, smart cards. . . 2 3

Table 1. Results of the fuzzing campaigns.

how well each channel was fuzzed: 0 if fuzzing failed, 1 if fuzzing could
have been done better or more in depth, and 2 if coverage was satisfying
enough (of course, this does not imply at all that the channel is exempt
from any bugs). In particular, three channels were effectively fuzzed, and
one (DRDYNVC) could not be fuzzed.

5.1 RDPSND

RDPSND is a static virtual channel that transports audio data from
server to client, so that the client is able to play sound originating from
the server. It is open by default. Most of the message types referenced in
the specification [15] were fuzzed. Each message type was fuzzed for hours
and the channel as a whole for days. Code coverage is decent.

One crash was found that is not further exploitable, but that will still
be detailed as it is a good example of “stateful bug”.

Out-of-Bounds Read in RDPSND. 2 The crash happened upon receipt
of a Wave2 PDU, inside CRdpAudioController::OnWaveData. Dissecting
the PDU (listing 1) does not reveal anything particularly shocking right
away. On a purely semantic level, fields that could be good candidates for
a crash are wFormatNo or cBlockNo, because they may index an array.

1 0d 00 10 00 Header

2 16 a1 wTimeStamp

3 0f 00 wFormatNo

4 20 cBlockNo

5 f5 00 00 bPad

6 c2 b8 b3 0d dwAudioTimeStamp

7 de 20 be ef Data

Listing 1. Out-of-Bounds Read bug in RDPSND: guilty PDU dissection.

Reversing the OnWaveData function (listing 2) allows to understand
the bug. The attacker controls wFormatNo (unsigned short), and the crash

2. CyberArk also found this bug and described it in their own article [25].

Valentino Ricotta 13

occurs when computing targetFormat. The out-of-bounds crash is quite
obvious; however, manually replaying the malicious PDU has no effect.
This is a case of “stateful bug” in which a sequence of PDUs crashed the
client, and only the last PDU is known.

1 wFormatNo = PDU -> Body . wFormatNo ;

2

3 // Has wFormatNo changed since the last Wave PDU ?

4 if (wFormatNo != this -> lastFormatNo) {

5 // Load the new format

6 if (! CRdpAudioController :: OnNewFormat (this , wFormatNo)) {

7 // Error , exit

8 }

9 this -> lastFormatNo = wFormatNo ;

10 }

11

12 // Fetch the audio format of index wFormatNo

13 savedAudioFormats = this -> savedAudioFormats ;

14 targetFormat = *(AudioFormat **)(savedAudioFormats + 8 * wFormatNo);

15

16 wFormatTag = targetFormat -> wFormatTag ;

Listing 2. Vulnerable piece of the OnWaveData function in RDPSND.

No length checking is performed here on wFormatNo, but there is ac-
tually a check inside the OnNewFormat function. In order to trigger the
bug, the condition has to be skipped over, and for that, wFormatNo should
be equal to the last one that was sent (this->lastFormatNo). The an-
swer to the problem lies in the Server Audio Formats and Version PDU
(figure 6). This PDU is used by the server to send a list of supported
audio formats to the client. The client will save this list of formats in
this->savedAudioFormats. Therefore, the bug can be triggered by send-
ing a Format PDU between two Wave PDUs to make this list smaller.
More specifically:

1. Send n > 1 formats to the client through a Format PDU.

2. Send a Wave PDU with wFormatNo set to n.

3. Send a new Format PDU with k < n formats: the format list is
freed and reconstructed.

4. Send the same Wave PDU than in step 2: since lastFormatNo

is n, the length check inside OnNewFormat is bypassed and the
out-of-bounds read triggered.

Although this bug cannot be grown into an actual vulnerability because
the memory read cannot be leaked back to the server, it highlights how
“mixed message type fuzzing” can help find new bugs. WinAFL managed
to find a sequence of PDUs which bypasses a certain condition to trigger
a crash that could have been otherwise overlooked.

14 Fuzzing Microsoft RDP using Virtual Channels

5.2 CLIPRDR

CLIPRDR is a static virtual channel dedicated to the synchronization
of the clipboard between the server and the client. It allows to copy and
paste several types of data (text, images, files. . .) from server to client
and vice versa. It is open by default.

Unlike most other channels, CLIPRDR is modelled by an actual state
machine (documented in [16]) and includes proper state verification. In-
deed, each PDU sub-handler (logic for a certain message type) calls the
CheckClipboardStateTable function prior to anything. This function
tracks and ensures the client is in the correct state to process the PDU. If
it is not, it just drops the message and does not do anything. This is a
concern for two major reasons:

1. In mixed message type fuzzing, very few PDU sequences would
make sense and pass the state checks, therefore a lot of the fuzzing
effort would go to waste.

2. Fixed message type fuzzing would not work either, or it would
require finding a way to bring the client to the right state before
each iteration and for each message type, which is not easy to
characterize and implement.

CLIPRDR comes with another surprise: incoming PDUs are dispatched
asynchronously inside the CClipRdrPduDispatcher::DispatchPdu func-
tion. The PDU sub-handling logic is thus run in a different thread, which
renders DynamoRIO’s thread_coverage option useless.

The choice was made to perform blind mixed message type fuzzing
(without thread coverage). This weaker strategy still allowed to identify a
bug.

Arbitrary Malloc Denial-of-Service in CLIPRDR. This bug showcases
a golden rule of fuzzing: that it is not only about crashes and that side
effects of fuzzing on a system can also reveal bugs. While blindly fuzzing the
channel, the virtual machine would always end up freezing entirely, which
required hard rebooting it. This was due to memory overcommitment in
the RDP client: it would, at some point, very quickly fill up the system’s
RAM until reaching “death by swap”.

Narrowing down the candidates for a malicious PDU was made possible
by purposefully slowing down the harness. The PDU listing 3 is a minimal
reproduction case of the bug: a Lock Clipboard Data PDU which only
contains a clipDataId field.

Valentino Ricotta 15

1 0a 00 msgType

2 00 00 msgFlags

3 04 00 00 00 dataLen

4 01 69 63 6b clipDataId

Listing 3. DoS in CLIPRDR: guilty PDU dissection.

In the CClipBase::OnLockClipData function, this field is used in a
SmartArray object, and the attacker-controlled value (an unsigned 32-bit
integer) is eventually used in a memory allocation (listing 4). This leads
to a malloc of size 8 × (32 + clipDataId), which means at maximum a
little more than 32 GB.

1 v5 = operator new(saturated_mul (32 + clipDataId , 8));

Listing 4. Vulnerable piece in CLIPRDR: arbitrary memory allocation in
DynArray::Grow.

Risk-wise, on systems with a moderate amount of RAM, this is a
case of remote system-wide denial of service; less impressive on a client
than on a server, but may still be dangerous. Moreover, the malicious
payloads can be sent in small increments to adapt to the amount of
RAM on the victim’s system (allocating too much at once will trigger
ERROR_NOT_ENOUGH_MEMORY).

5.3 DRDYNVC

DRDYNVC is a static virtual channel dedicated to the support of dynamic
virtual channels (DVC). It allows to create, open and close DVCs, and
data transported through DVCs is actually transported over DRDYNVC,
which acts a wrapping layer. It is open by default.

Unfortunately, we ran into some complications when try-
ing to harness the channel. When opening a channel through
WTSVirtualChannelOpen, WTSAPI32 eventually ends up perform-
ing a Remote Procedure Call. The endpoint of the RPC is lo-
cated in termsrv.dll’s function RpcCreateVirtualChannel, which
leads to the CUMRDPConnection::CreateVirtualChannel function inside
rdpcorets.dll (listing 5).

1 if (! _stricmp (" DRDYNVC ", channel_name)

2 || ! _stricmp (" rdpgrfx ", channel_name)

3 || ! _stricmp (" rdpinpt ", channel_name)

4 || ! _stricmp (" rdpcmd ", channel_name)

5 || ! _stricmp (" rdplic ", channel_name)

6 || ! _stricmp (" Microsoft :: Windows :: RDS :: Graphics ", channel_name))

7 {

16 Fuzzing Microsoft RDP using Virtual Channels

8 error_code = 0 x80070005 ;

9 goto LABEL_58 ;

10 }

Listing 5. Channel opening blacklist in CreateVirtualChannel (rdpcorets.dll).

DRDYNVC is therefore blacklisted from being opened via the WTS API,
along with some other channels. Other approaches such as patching the
DLLs did not yield favorable results, hence why this channel was not
further explored.

5.4 RDPDR

Last but not least, RDPDR is the static virtuel channel dedicated to
redirecting access from the server to the client’s file system. It is open by
default. It is also the base channel that hosts several sub-extensions such
as the smart card extension, the printing extension or the ports extension.
Figure 8 shows the architecture of the channel in mstscax.dll.

Fig. 8. RDPDR channel architecture in mstscax.dll and header structure.

In this channel, we encountered a difficulty: the client closes the channel
as soon as anything goes wrong while handling an incoming PDU (length
checking failure, unrecognized enum value. . .). The choice was made to

Valentino Ricotta 17

patch the DLL to get rid of this measure. However, one should be very
careful while patching a fuzzing target. Since the patch modifies the client’s
behavior, real bugs in the RDP client will only constitute a subset of the
bugs found in the patched DLL.

The channel was fuzzed as a whole, including the sub-protocols (printer,
smart cards. . .). Three bugs were identified.

Arbitrary Malloc Denial-of-Service in RDPDR. This first bug is highly
similar to the one found in CLIPRDR, so it will not be detailed further.
A malicious Device I/O Request PDU of sub-type Device Control Re-
quest can trigger an arbitrary memory allocation up to 4 GB inside
W32SCard::MsgIrpDeviceControl.

Remote Heap Leak in RDPDR. This vulnerability resides in RDPDR’s
printer sub-protocol. It was reported to Microsoft, which assigned it CVE-
2021-38665 [22,27], and assessed it as Information Disclosure of Important
severity.

Similarly to some previous bugs, the crashes WinAFL found were not
what led to discover this bug. Rather, it was the prolonged fuzzing and
the millions of executions that unveiled unexpected side effects the server
could have on the client’s system. After a while, every time it was run, the
RDP client would start consuming a lot of RAM, until eventually hanging
the whole system.

The reason was that upon starting, the client would keep iterat-
ing on registry keys inside HKCU\Software\Microsoft\Terminal Server

Client\Default\AddIns\RDPDR, and the more keys, the worse the mem-
ory consumption. This fact alone is already very annoying for a client:
it is more serious than a simple crash or arbitrary memory allocation.
Since the bug is persistent, it entirely prevents one from using their RDP
client ever again, unless they specifically know how to fix the problem by
deleting the correct keys in the registry.

Figure 9 shows the guilty keys inside the registry. Their names are
actually WinAFL mutations interpreted as UTF-16. However, what catches
the eye is that these key names are of quite variable length, and may
suggest an out-of-bounds of some sort.

The Add Printer Cachedata PDU type, found in the printer subprotocol
specification [17], is responsible for creating these registry keys. Reversing
the W32DrPRN::AddPrinterCacheInfo function (listing 6) shows that the
key name (PrinterName) is entirely controlled.

18 Fuzzing Microsoft RDP using Virtual Channels

1 __int64 W32DrPRN :: AddPrinterCacheInfo (DR_PRN_ADD_CACHEDATA * PduBody

, unsigned int PduBodyLength) {

2 // ...

3 const WCHAR * PrinterName = (const WCHAR *) ((char *) PduBody + 24 +

PduBody -> PnPNameLen + PduBody -> DriverNameLen);

4 RegCreateKeyExW (

5 HKEY_CURRENT_USER ,

6 L" Software \\ Microsoft \\ Terminal Server Client \\ Default \\ AddIns \\

RDPDR ",

7 0, 0, 0, 0xF003F , 0, &hKey , & dwDisposition

8);

9 RegCreateKeyExW (hKey , PrinterName , 0, 0, 0, 0 xF003F , 0, & phkResult

, & dwDisposition);

10 RegSetValueExW (phkResult , L" PrinterCacheData ", 0, 3, (const BYTE

*) PduBody , TotalLen);

11 // ...

12 }

Listing 6. W32DrPRN::AddPrinterCacheInfo function in the RDPDR channel.

Fig. 9. Mutated key names inside the registry while fuzzing RDPDR.

The bug comes from the fact that the server can send a non-
null terminated wide string as PrinterName. It is naively passed to
RegCreateKeyExW, which will create the key assuming its name stops
at the first wide null-byte (0x0000).

For example, by sending a PDU with the PrinterName field set to
Brother DCP-1000 USB and without terminating wide null byte, the
client may create a key with the following name (in hexadecimal): 42

00 72 00 6F 00 74 00 68 00 65 00 72 00 20 00 44 00 43 00 50

00 2D 00 31 00 30 00 30 00 30 00 20 00 55 00 53 00 42 00 20

00 61 62 63 64 8D 28 0F 90 00 40 00 90 D8 92 60 C1 FB 7F.

Valentino Ricotta 19

One can obtain these values by reading the key name from the registry
and encoding it as UTF-16. This reveals in particular that some heap bytes
were leaked at the end of the name, including an address: 0x7FFBC16092D8

(a vtable pointer in mstscax.dll). This address leak was quite consistent
across different environments, allowing to weaken ASLR and calculate
mstscax.dll’s base address. In case there is no valuable leak, the attacker
can try sending the PDU again, and do so as many times as they want.

In order to repatriate the leaks back to the server, there exists in the
protocol a Client Device List Announce Request PDU type. The RDP
client sends these PDUs (one for each cached printer) upon initialization
of the RDPDR channel. Therefore, if the victim reconnects to the server,
the client will iterate on the registry keys and send them to the server,
including the tampered keys with the leaks.

One way to turn the vulnerability into a zero-click attack is to
send garbage bytes to Microsoft::Windows::RDS::Graphics (a dynamic
channel used to transport bitmap data). Corrupting this channel shows a
pop-up window that says: “connection has been lost, attempting to recon-
nect to the session”. Then, the client effectively reconnects automatically
to the server.

Finally, once the client sent the leaks, the attacker can send Delete
Printer Cachedata PDUs to delete the leaky keys in the client’s registry if
they wish.

Figure 10 summarizes the attack scheme for this vulnerability.

Fig. 10. Attack scheme for the Remote Heap Leak vulnerability in RDPDR.

Deserialization Bug / Heap Overflow in RDPDR. This vulnerability
resides in RDPDR’s printer sub-protocol. It was reported to Microsoft,

20 Fuzzing Microsoft RDP using Virtual Channels

which assigned it CVE-2021-38666 [21,28], and assessed it as Remote Code
Execution of Critical severity.

The bug was found by analyzing crashes (which is not necessarily
obvious by now). Figure 11 is a screenshot from the crash log file. Many
different types of crashes occurred, across distinct modules, and even some
in “unknown modules” with perplexing instruction pointer values.

One crash seemed to occur more frequently inside RPCRT4.DLL,
thus it was the starting point for analysis. The crash arose inside the
NdrSimpleTypeConvert function (listing 7), in the middle of what seems
to be a DWORD byteswap in the heap.

1 mov eax , [rdx] ; crash

2 bswap eax

3 mov [rdx], eax

Listing 7. Out-of-bounds access in RPCRT4.DLL.

1 72 44 52 49 01 00 00 00 f8 01 02 00 08 00 00 00 0e 00 00 00 00 00 00

00 DeviceIoRequest

2 00 40 00 00 OutputBufferLength

3 00 80 2d 00 InputBufferLength

4 e8 00 09 00 IoControlCode

5 00 00 00 00 00 00 00 00 00 00 00 00 02 00 00 00 02 00 08 00 Padding

6 InputBuffer

7 01 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

8 00 00 00 00 00 00 00 00 00 00 00 00 00 00 01 00

9 00 00 00 00 00 00 00 00 00 03 00 08 00 01 40 00

10 00 16 00 00 00 01 00 00 00

Listing 8. One of the guilty payloads.

The guilty payload (listing 8) was isolated: a Device I/O Request PDU,
more specifically of sub-type Device Control Request. The IoControlCode

field is specific to the redirected device, and the Smart Card sub-protocol
specification [18] contains a table that maps these values to associated
structure types for the input and output packets.

In parallel, the crash was successfully reproduced and analyzing
the call stack leads to the function W32SCard::LocateCardsByATRA in
mstscax.dll. But in fact, analyzing other payloads that trigger the same
crash points out other functions (for instance, W32SCard::WriteCache or
W32SCard::DecodeContextAndStringCallW). These functions all have a
certain portion of code in common, shown in listing 9. Only the offset
parameter (0xE) varies across the functions. The IOCTL table in the
specification suggests there are around 60 functions of this kind.

Valentino Ricotta 21

Fig. 11. Crashes while fuzzing RDPDR.

1 v6 = MesDecodeBufferHandleCreate (

2 &PDU -> InputBuffer ,

3 PDU -> InputBufferLength ,

4 & pHandle

5);

6 // ...

7 // Crash here :

8 NdrMesTypeDecode3 (

9 pHandle ,

10 & pPicklingInfo ,

11 & pProxyInfo ,

12 (const unsigned int **)& ArrTypeOffset ,

13 0xEu ,

14 & pObject

15);

Listing 9. Similar code pattern in several functions of the Smart Card extension.

The MesDecodeBufferHandleCreate function creates a decoding han-
dle for RPC serialization. Indeed, RPC has its own serialization engine,
called the NDR marshaling engine (Network Data Representation) [19],
which the RDP client uses to decode structures from the PDUs.

Once the decoding handle is initialized with the input buffer, the
data is effectively deserialized through NdrMesTypeDecode3. This function
is nowhere to be documented, because developers are not supposed to
use this function directly: instead, they should describe structures using
Microsoft’s IDL (Interface Description Language), and use the MIDL
compiler to generate stubs that can encode and decode data.

22 Fuzzing Microsoft RDP using Virtual Channels

The pProxyInfo is a MIDL_STUBLESS_PROXY_INFO structure that con-
tains various informations, including the RPC interface UUID and a Type
Format String, which is a compiled description of all the types and struc-
tures that are used within the Smart Card extension. The varying offset
(0xE) then allows to select a specific structure for deserialization inside
this description. Listing 10 is the structure definition for the example of
the W32SCard::LocateCardsByATRA function.

1 typedef struct _LocateCardsByATRA_Call {

2 REDIR_SCARDCONTEXT Context ;

3 [range (0 ,1000)] unsigned long cAtrs ;

4 [size_is (cAtrs)] LocateCards_ATRMask * rgAtrMasks ;

5 [range (0 ,10)] unsigned long cReaders ;

6 [size_is (cReaders)] ReaderStateA * rgReaderStates ;

7 } LocateCardsByATRA_Call ;

Listing 10. LocateCardsByATRA_Call structure in the NDR format string for the
Smart Card extension.

To summarize the information gathered up to this point:

— The attacker can send an IoControlCode, an InputBuffer and
an InputBufferLength.

— The input buffer is deserialized through the RPC NDR marshaling
engine according to a structure that depends on IoControlCode.

— There are around 60 possible IOCTL calls, and thus decoding
structures.

— There is an out-of-bounds read during the deserialization process,
in the NdrSimpleTypeConvert function.

There are two key elements to the sought vulnerability. The first one
is quite evident: the value of InputBufferLength is not properly checked,
so there is a first potential overrun as the NdrMesTypeDecode3 function
may think the buffer is longer than it really is.

To understand the second one, we can take a look at the
NdrSimpleTypeConvert function, more specifically at the moment of
the crash (listing 11). The byte swap takes place when the endianness of
the serialized data does not match the local endianness. Before actually
decoding data, a pass on the input buffer is performed to switch the
endianness of several types, in particular the FC_ULONG fields (which are
unsigned long in the structure).

Therefore, in the LocateCardsByATRA_Call structure (listing 10), the
fields cAtrs and cReaders are byte-swapped. But also and more impor-
tantly, any unsigned long that lies inside the nested rgAtrMasks or
rgReaderStates fields will be byte-swapped. Since these fields are arrays

Valentino Ricotta 23

of structs which size is encoded inside the serialized buffer and thus con-
trolled by the attacker, there exists a second kind of overrun. Out of all
the IOCTL structures, only 3 were found to be arranged as to allow such
an overrun.

1 void NdrSimpleTypeConvert (PMIDL_STUB_MESSAGE StubMsg , uchar Format)

2 {

3 switch (Format) {

4 // ...

5 case FC_ULONG :

6 if ((StubMsg ->RpcMsg -> DataRepresentation & NDR_INT_REP_MASK)

!= NDR_LOCAL_ENDIAN) {

7 // Crash

8 *((ulong *) StubMsg -> Buffer) = RtlUlongByteSwap (*(ulong *)

StubMsg -> Buffer);

9 }

10 StubMsg -> Buffer += 4;

11 // ...

12 }

13 }

Listing 11. NdrSimpleTypeConvert function.

By combining these two overruns, the attacker can trigger out-
of-bounds operations in the heap. How does that explain the other
crashes that were logged in different modules? Listing 12 shows the
LocateCards_ATRMask structure nested inside LocateCardsByATRA_Call.
There is an unsigned long field (cbAtr) at the beginning of this 76-bytes
structure, thus an attacker may be able to byte-swap DWORDs in the
heap every 76 bytes. This allows to corrupt many objects in the heap. If
the input buffer length is large enough to allow out-of-bounds operations,
but small enough not to exceed the heap segment, the deserialization
process returns with a damaged heap.

1 typedef struct _LocateCards_ATRMask {

2 [range (0, 36)] unsigned long cbAtr ;

3 byte rgbAtr [36];

4 byte rgbMask [36];

5 } LocateCards_ATRMask ;

Listing 12. LocateCards_ATRMask structure in the NDR format string for the
Smart Card extension.

From there, it is suspected such behavior could be exploited to reach
remote code execution, for instance by corrupting heap objects or modify-
ing vtable pointers. However, we were not able to exploit this vulnerability
and provide a proof of concept.

24 Fuzzing Microsoft RDP using Virtual Channels

6 Conclusion

A fuzzer based on WinAFL [6] was architectured to attack Microsoft’s
RDP client in Windows. The Virtual Channels layer was targeted via
the WTS API [20], opening up a large surface that was only briefly
tackled through a handful of static channels. After weighing different
potential strategies, some channels were effectively fuzzed and led to
several bugs including CVE-2021-38665 in the Printer extension [22]
(Important Information Disclosure) and CVE-2021-38666 in the Smart
Card extension [21] (Critical Remote Code Execution).

Potential future work may include fuzzing other channels, fuzzing the
server, or developing new fuzzing techniques, especially ones that are more
adapted to channel state machines. For instance, the newer snapshot-based
fuzzer what the fuzz [3] added support for multi-packet delivery.

Although not mentioned in this article, the fuzzer was successfully
reused for fuzzing alternate client implementations of RDP, such as
FreeRDP [1], which led to other CVEs (remote heap leak and arbitrary
file read [8, 9]).

References

1. FreeRDP. https://www.freerdp.com/.

2. Andrew Swoboda, Lane Thames, Tyler Reguly. RDP Fuzzing: Why the Microsoft
Open Protocol Specification is Awesome! 2014.

3. Axel "0vercl0k" Souchet. what the fuzz. 2021. https://github.com/0vercl0k/wtf.

4. Chun Sung Park, Yeongjin Jang, Seungjoo Kim, Ki Taek Lee. Fuzzing and Exploit-
ing Virtual Channels in Microsoft Remote Desktop Protocol for Fun and Profit. 2019.
https://www.unexploitable.systems/papers/park:rdpfuzzing-slides.pdf.

5. Eyal Itkin. Reverse RDP Attack: Code Execution on RDP Clients.
2019. https://research.checkpoint.com/2019/reverse-rdp-attack-code-

execution-on-rdp-clients/.

6. Ivan Fratric. WinAFL. https://github.com/googleprojectzero/winafl.

7. FreeRDP. Reference Documentation. https://github.com/FreeRDP/FreeRDP/

wiki/Reference-Documentation.

8. FreeRDP. Arbitrary file read in Windows clipboard (CVE-2021-37594). 2021. https:

//github.com/FreeRDP/FreeRDP/security/advisories/GHSA-gw67-q7f9-4cg2.

9. FreeRDP. Arbitrary file read in Windows clipboard (CVE-2021-37595). 2021. https:

//github.com/FreeRDP/FreeRDP/security/advisories/GHSA-qg62-jcfp-46fw.

10. Valentin J. M. Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha, Manuel
Egele, Edward J. Schwartz, and Maverick Woo. Fuzzing: Art, science, and engi-
neering. CoRR, abs/1812.00140, 2018.

11. Markus Gaasedelen. Lighthouse - A Coverage Explorer for Reverse Engineers.
https://github.com/gaasedelen/lighthouse.

https://www.freerdp.com/
https://github.com/0vercl0k/wtf
https://www.unexploitable.systems/papers/park:rdpfuzzing-slides.pdf
https://research.checkpoint.com/2019/reverse-rdp-attack-code-execution-on-rdp-clients/
https://research.checkpoint.com/2019/reverse-rdp-attack-code-execution-on-rdp-clients/
https://github.com/googleprojectzero/winafl
https://github.com/FreeRDP/FreeRDP/wiki/Reference-Documentation
https://github.com/FreeRDP/FreeRDP/wiki/Reference-Documentation
https://github.com/FreeRDP/FreeRDP/security/advisories/GHSA-gw67-q7f9-4cg2
https://github.com/FreeRDP/FreeRDP/security/advisories/GHSA-gw67-q7f9-4cg2
https://github.com/FreeRDP/FreeRDP/security/advisories/GHSA-qg62-jcfp-46fw
https://github.com/FreeRDP/FreeRDP/security/advisories/GHSA-qg62-jcfp-46fw
https://github.com/gaasedelen/lighthouse

Valentino Ricotta 25

12. Michal Zalewski. american fuzzy lop. https://github.com/google/AFL.

13. Microsoft. GFlags and PageHeap. https://docs.microsoft.com/en-us/windows-

hardware/drivers/debugger/gflags-and-pageheap.

14. Microsoft. [MS-RDPBCGR]: Remote Desktop Protocol: Basic Connectivity and
Graphics Remoting. https://docs.microsoft.com/en-us/openspecs/windows_

protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c.

15. Microsoft. [MS-RDPEA]: Remote Desktop Protocol: Audio Output Vir-
tual Channel Extension. https://winprotocoldoc.blob.core.windows.net/

productionwindowsarchives/MS-RDPEA/%5bMS-RDPEA%5d.pdf.

16. Microsoft. [MS-RDPECLIP]: Remote Desktop Protocol: Clipboard Vir-
tual Channel Extension. https://winprotocoldoc.blob.core.windows.net/

productionwindowsarchives/MS-RDPECLIP/%5bMS-RDPECLIP%5d.pdf.

17. Microsoft. [MS-RDPEPC]: Remote Desktop Protocol: Print Virtual
Channel Extension. https://winprotocoldoc.blob.core.windows.net/

productionwindowsarchives/MS-RDPEPC/%5BMS-RDPEPC%5D.pdf.

18. Microsoft. [MS-RDPESC]: Remote Desktop Protocol: Smart Card Vir-
tual Channel Extension. https://winprotocoldoc.blob.core.windows.net/

productionwindowsarchives/MS-RDPESC/%5bMS-RDPESC%5d.pdf.

19. Microsoft. RPC NDR Engine (RPC). https://docs.microsoft.com/en-us/

windows/win32/rpc/rpc-ndr-engine.

20. Microsoft. wtsapi32.h header. https://docs.microsoft.com/en-us/windows/

win32/api/wtsapi32/.

21. Microsoft Security Response Center. Remote Desktop Client Remote Code Ex-
ecution Vulnerability (CVE-2021-38666). 2021. https://msrc.microsoft.com/

update-guide/vulnerability/CVE-2021-38666.

22. Microsoft Security Response Center. Remote Desktop Protocol Client Information
Disclosure Vulnerability (CVE-2021-38665). 2021. https://msrc.microsoft.com/

update-guide/vulnerability/CVE-2021-38665.

23. Ole André V. Ravnås. Frida: A word-class dynamic instrumentation framework.
https://frida.re/.

24. Shaked Reiner. Explain Like I’m 5: Remote Desktop Protocol (RDP).
2020. https://www.cyberark.com/resources/threat-research-blog/explain-

like-i-m-5-remote-desktop-protocol-rdp.

25. Shaked Reiner, Or Ben-Porath. Fuzzing RDP: Holding the Stick at Both Ends.
2021. https://www.cyberark.com/resources/threat-research-blog/fuzzing-

rdp-holding-the-stick-at-both-ends.

26. Stas’M. RDP Wrapper Library. https://github.com/stascorp/rdpwrap.

27. Valentino Ricotta. Remote ASLR Leak in Microsoft’s RDP Client through Printer
Cache Registry (CVE-2021-38665). 2021. https://thalium.github.io/blog/

posts/leaking-aslr-through-rdp-printer-cache-registry/.

28. Valentino Ricotta. Remote Deserialization Bug in Microsoft’s RDP Client through
Smart Card Extension (CVE-2021-38666). 2021. https://thalium.github.io/

blog/posts/deserialization-bug-through-rdp-smart-card-extension/.

29. WinAFL. DynamoRIO Instrumentation Mode. https://github.com/

googleprojectzero/winafl/blob/master/readme_dr.md.

30. yrp. frida-drcov.py. https://github.com/gaasedelen/lighthouse/tree/master/

coverage/frida.

https://github.com/google/AFL
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/gflags-and-pageheap
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-rdpbcgr/5073f4ed-1e93-45e1-b039-6e30c385867c
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPEA/%5bMS-RDPEA%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPEA/%5bMS-RDPEA%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPECLIP/%5bMS-RDPECLIP%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPECLIP/%5bMS-RDPECLIP%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPEPC/%5BMS-RDPEPC%5D.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPEPC/%5BMS-RDPEPC%5D.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPESC/%5bMS-RDPESC%5d.pdf
https://winprotocoldoc.blob.core.windows.net/productionwindowsarchives/MS-RDPESC/%5bMS-RDPESC%5d.pdf
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-ndr-engine
https://docs.microsoft.com/en-us/windows/win32/rpc/rpc-ndr-engine
https://docs.microsoft.com/en-us/windows/win32/api/wtsapi32/
https://docs.microsoft.com/en-us/windows/win32/api/wtsapi32/
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38666
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38666
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38665
https://msrc.microsoft.com/update-guide/vulnerability/CVE-2021-38665
https://frida.re/
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://www.cyberark.com/resources/threat-research-blog/explain-like-i-m-5-remote-desktop-protocol-rdp
https://www.cyberark.com/resources/threat-research-blog/fuzzing-rdp-holding-the-stick-at-both-ends
https://www.cyberark.com/resources/threat-research-blog/fuzzing-rdp-holding-the-stick-at-both-ends
https://github.com/stascorp/rdpwrap
https://thalium.github.io/blog/posts/leaking-aslr-through-rdp-printer-cache-registry/
https://thalium.github.io/blog/posts/leaking-aslr-through-rdp-printer-cache-registry/
https://thalium.github.io/blog/posts/deserialization-bug-through-rdp-smart-card-extension/
https://thalium.github.io/blog/posts/deserialization-bug-through-rdp-smart-card-extension/
https://github.com/googleprojectzero/winafl/blob/master/readme_dr.md
https://github.com/googleprojectzero/winafl/blob/master/readme_dr.md
https://github.com/gaasedelen/lighthouse/tree/master/coverage/frida
https://github.com/gaasedelen/lighthouse/tree/master/coverage/frida

	Fuzzing Microsoft RDP using Virtual Channels

