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Abstract. Wi-Fi replaced Ethernet and became the main network pro-
tocol on laptops for the last few years. Software implementations of the
Wi-Fi protocol naturally became the targets of attackers, and vulnera-
bilities found in Wi-Fi drivers were exploited to gain control of the OS,
remotely and without any user interaction. However, not much research
has been published on Wi-Fi firmware, outside of Broadcom models.
This article presents the internals of an Intel Wi-Fi chip. This study,
mostly conducted through reverse engineering, led to the discovery of
vulnerabilities such as arbitrary code execution on the chip and secure
boot bypass, which were reported to the manufacturer.

1 Introduction

1.1 How we met the Intel Wi-Fi chip

One day in January 2021, Gabriel tried to browse a web application
hosted by his laptop using his smartphone. This operation seems simple,
but that day, it made his laptop disconnect from the Wi-Fi network, and
this was reproducible. As this was quite annoying, he opened his kernel
log (listing 1).

1 iwlwifi 0000:01:00.0: Start IWL Error Log Dump :

2 iwlwifi 0000:01:00.0: Status : 0 x00000100 , count : 6

3 iwlwifi 0000:01:00.0: Loaded firmware version : 34.0.1

4 iwlwifi 0000:01:00.0: 0 x00000038 | BAD_COMMAND

5 ...

6 iwlwifi 0000:01:00.0: Start IWL Error Log Dump :

7 iwlwifi 0000:01:00.0: Status : 0 x00000100 , count : 7

8 iwlwifi 0000:01:00.0: 0 x00000070 | ADVANCED_SYSASSERT

9 ...

10 iwlwifi 0000:01:00.0: 0 x004F01A7 | last host cmd

11 ieee80211 phy0 : Hardware restart was requested

Listing 1. Messages appearing in Linux kernel log while requesting a web page

The failed assertion (line 8) indicated an issue in the firmware of the
Wi-Fi chip. This issue was easy to reproduce and only occurred when both
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the smartphone and the laptop were connected to the same Wi-Fi access
point. Why is this happening? Can it be exploited, for example to run
arbitrary code on the Wi-Fi chip?

This event started an adventure in the internals of Intel Wi-Fi chips.
As the interactions between a kernel module and a hardware component
can be very complex, the first step was to better understand the Linux
kernel module driving the chip. This work quickly led to the code actually
loaded on the chip. Nicolas then joined the adventure and developed some
tooling, as using IDA disassembler felt too rudimentary. Analyzing the
code led to the discovery of a simple vulnerability enabling arbitrary code
execution on the Wi-Fi chip.

As the chip was quite old, we also experimented on a more recent
laptop, with a more recent Wi-Fi chip. The differences between the chips
are presented in figure 1. We did not find the same vulnerability on this
chip, and both chips included a mechanism preventing modified firmware
from being loaded (by verifying a digital signature). So at first we did not
have any way to run arbitrary code on this newer chip.

First chip Second chip

Hardware device
Intel Dual Band

Intel Wireless-AC 9560 160MHz
Wireless AC 8260

Launch date Q2 2015 Q4 2017

Firmware file iwlwifi-8000C-34.ucode iwlwifi-9000-pu-b0-jf-b0-46.ucode

Firmware version 34.0.1 46.6f9f215c.0

Intel website resources: https://www.intel.com/content/www/us/en/products/

sku/86068/intel-dual-band-wirelessac-8260/specifications.html and
https://www.intel.com/content/www/us/en/products/sku/99446/intel-

wirelessac-9560/specifications.html

Fig. 1. Differences between the two studied Wi-Fi chips

Both Wi-Fi chips expose a rich interface to the Linux kernel. Using
it, we managed to dump the code which actually verifies the firmware
signature. Analyzing this code quickly led to the discovery of a simple
signature verification bypass on the first studied chip. Unfortunately this
bypass did not work on the newer chip, even though the root cause of the
issue did not appear to be fixed. After some weeks, we found a way to
bypass the signature verification on the newer Wi-Fi chip too.

Being able to run arbitrary code on the chip enabled us to gain
a more precise understanding of its working. For example, the Wi-Fi
firmware is too large to fit in the memory of the chip and a mechanism is

https://www.intel.com/content/www/us/en/products/sku/86068/intel-dual-band-wirelessac-8260/specifications.html
https://www.intel.com/content/www/us/en/products/sku/86068/intel-dual-band-wirelessac-8260/specifications.html
https://www.intel.com/content/www/us/en/products/sku/99446/intel-wirelessac-9560/specifications.html
https://www.intel.com/content/www/us/en/products/sku/99446/intel-wirelessac-9560/specifications.html
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implemented to store code and data in the main system memory. This is
what Intel calls the Paging Memory in the source code of the Linux kernel
module. The content of this memory has to be authenticated in some
way, to prevent an attacker on the main operating system from modifying
it. In practice, the firmware seems to use a hardware-assisted universal
message authentication code to ensure the integrity of each page in this
Paging Memory. The details of this mechanism do not seem to be publicly
documented anywhere, even though they are key to ensure the security of
the chip.

1.2 State of the art and contributions

The first public remote exploits against Wi-Fi were presented in 2007 [9].
The exploited vulnerabilities were found in Linux kernel modules thanks
to fuzzing. These modules being open-source and their code quality quite
low, multiple vulnerabilities were found in the Wi-Fi kernel modules of
major network cards manufacturers. Public analysis of Wi-Fi firmware
wasn’t a thing at that time, probably because the attack surface of kernel
modules was sufficient for attackers to gain access to a remote computer.

In 2010 [8], the reverse engineering of an Ethernet network card
firmware led to the discovery of vulnerabilities in the ASF protocol im-
plementation. The researchers successfully gained control of this network
card, remotely.

In 2012 [4], the firmware of an Ethernet Broadcom chip was reverse
engineered and modified to include a debugger and eventually a backdoor.
Broadcom’s Ethernet and Wi-Fi firmware aren’t encrypted or signed and
can thus be patched, allowing dynamic analysis. Public datasheets also
help analysis [3] [7]. Vulnerabilities in Broadcom’s Wi-Fi chipsets were
found and exploited in 2017 [2].

In this article, we’ll present the internals of Intel Wi-Fi chips, gained
through the reverse engineering of the associated firmware. While the
firmware source code isn’t available, the Linux kernel module interacting
with these PCI chips is open source and is of great help. Links to the Linux
kernel sources are specific to the version 5.11 in order to have permalinks.

The main contributions of this article are:
— The publication of an Intel Wi-Fi firmware parsing tool,
— Reverse engineering of Intel Wi-Fi firmware,
— Internals of these firmware,
— Exploitation of vulnerabilities in the secure-boot mechanisms,
— Publication of on-chip instrumentation, tracing and debugging

tools.
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2 Finding the firmware code

2.1 Discovering iwlwifi

When studying a hardware component such as the Intel Wi-Fi chip,
one of the first things to do is to identify which one it is: its model name,
revision number, etc. On a laptop which was used to perform experiments,
the kernel log indicated the presence of an Intel Wireless-AC 9560 chip
handled by iwlwifi, the Linux kernel module for Intel Wireless Wi-Fi
(listing 2).

1 iwlwifi 0000:00:14.3: Detected Intel (R) Wireless -AC 9560 160 MHz ,

2 REV =0 x318

Listing 2. Extract of kernel log showing information about the Wi-Fi chip

In practice, four kernel modules are used to implement the Wi-Fi
feature with this chip, in Linux 5.11:

— iwlwifi 1 handles the hardware interface (through the PCIe bus)
with the chip.

— iwlmvm 2 implements some higher-level interface to the firmware of
chips using MVM (which seems to be an acronym for multi-virtual
MAC).

— mac80211 3 implements a IEEE 802.11 (Wi-Fi) networking stack
in Linux.

— cfg80211 4 provides a configuration interface to user-space pro-
grams.

The modules iwlwifi and iwlmvm support many versions of Intel
Wi-Fi chips. To identify which version is used, these modules use the PCI
device ID. The studied chip uses a PCI device ID 9df0 (listing 3), which
is mapped to a structure named iwl9560_trans_cfg in iwlwifi.5

1 $ lspci -nn -s 00:14.3

2 00:14.3 Network controller [0280]: Intel Corporation Cannon Point -LP

CNVi [ Wireless -AC] [8086:9 df0] (rev 30)

Listing 3. Requesting the PCI device ID using lspci

1 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi
2 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/mvm
3 https://elixir.bootlin.com/linux/v5.11/source/net/mac80211
4 https://elixir.bootlin.com/linux/v5.11/source/net/wireless
5 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/pcie/drv.c#L463

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/mvm
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/mvm
https://elixir.bootlin.com/linux/v5.11/source/net/mac80211
https://elixir.bootlin.com/linux/v5.11/source/net/wireless
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/drv.c#L463
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/drv.c#L463
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To communicate with the chip, iwlwifi configures the first
Base Address Register (BAR) of the PCIe interface, using functions
pcim_iomap_regions_request_all and pcim_iomap_table.6 This is a
standard way of communicating with a PCIe chip using Memory-Mapped
Input/Output (MMIO). After configuring this interface, the kernel module
uses it to retrieve some hardware revision information. Then, at some
point, the function iwl_request_firmware 7 tries to load a file named
iwlwifi-9000-pu-b0-jf-b0-{API}.ucode 8 where {API} is a number
identifying the interface version of the firmware. At the time of the study,
the Linux firmware repository 9 contained 6 such files, with numbers be-
tween 33 and 46. To study the correct firmware, it was necessary to find
out which one was actually loaded. And this information was actually
written in the kernel log (listing 4)!

1 iwlwifi 0000:00:14.3: loaded firmware version 46.6 f9f215c .0

2 9000 -pu -b0 -jf -b0 -46. ucode op_mode iwlmvm

Listing 4. Extract of kernel log showing the chosen firmware file

2.2 Dissecting the firmware file

In the hardware world, some devices receive their firmware directly, as
an opaque blob, without much analysis from the operating system. The
studied Intel Wi-Fi chips are not like these devices. Instead, their firmware
files are first decoded by iwlwifi and only some parts are actually sent
to the chips.

In the kernel module, the function which parses the firmware file is
named iwl_parse_tlv_firmware.10 It parses a header followed by a series
of Type-Length-Value entries (TLV) containing much information.

The firmware we studied in the experiments is available on
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/

linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?

6 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/pcie/trans.c#L3455
7 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/iwl-drv.c#L160
8 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/cfg/9000.c#L29
9 https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-

firmware.git/tree/?h=20211216
10 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/iwl-drv.c#L554

https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L3455
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L3455
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L160
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L160
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/cfg/9000.c#L29
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/cfg/9000.c#L29
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/?h=20211216
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/?h=20211216
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L554
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L554
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
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h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a. This
web page gives the ASCII representation of the firmware, which starts with
the header containing a version string IWL.release/core43::6f9f215c.

After the header, each entry of the file starts with a type which is an
item of enum iwl_ucode_tlv_type.11 The actual code which is loaded
on the chip is contained in entries with type IWL_UCODE_TLV_SEC_RT

and IWL_UCODE_TLV_SEC_INIT (and a few other ones not described here).
Each such entry defines a memory section (hence the _SEC_ in the name)
of the loaded firmware and starts with a 32-bit load address (in Little
Endian bit order) followed by the content.

For example, in the studied firmware file, the bytes at offset 0x2f4

are 13000000 bc020000 00404000 06000000 a1000000. This defines a
TLV entry of type 0x13=IWL_UCODE_TLV_SEC_RT with 0x2bc bytes. This
type enables to decode the remaining bytes as the definition of a firmware
section at the address 0x00404000 which starts with the bytes 06000000

a1000000.
Plugging everything together leads to finding the sections presented

in listing 5.

1 SEC_RT 00404000..004042 b8 (0 x2b8 =696 bytes )

2 SEC_RT 00800000..00818000 (0 x18000 =98304 bytes )

3 SEC_RT 00000000..00038000 (0 x38000 =229376 bytes )

4 SEC_RT 00456000..0048 d874 (0 x37874 =227444 bytes )

5 SEC_INIT 00404000..004042 c8 (0 x2c8 =712 bytes )

6 SEC_INIT 00800000..008179 c0 (0 x179c0 =96704 bytes )

7 SEC_INIT 00000000..00024 ee8 (0 x24ee8 =151272 bytes )

8 SEC_INIT 00456000..00471 d04 (0 x1bd04 =113924 bytes )

9 SEC_INIT 00410000..00417100 (0 x7100 =28928 bytes )

10 SEC_RT ffffcccc .. ffffccd0 (0 x4 =4 bytes )

11 SEC_RT 00405000..004052 b8 (0 x2b8 =696 bytes )

12 ...

Listing 5. Raw decoding of the sections in the firmware file

This listing contains some strange entries. For example, some SEC_INIT

sections (used at initialization time) seem to be inserted between two sets
of SET_RT sections (used for runtime) and the entry for ffffcccc seems
off. The iwlwifi kernel module contains a macro which defines this last
value as a separator between CPU1 and CPU2 (listing 6).12 Indeed the
studied W-Fi chip contains two processors named UMAC and LMAC ! In
literature, MAC usually means Medium Access Controller and is a layer of

11 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/file.h#L47
12 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/file.h#L461

https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/tree/iwlwifi-9000-pu-b0-jf-b0-46.ucode?h=20210511&id=4f549062619750e76f3155fc50b5c0f6529eed8a
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/file.h#L47
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/file.h#L47
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/file.h#L461
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/file.h#L461
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a network stack. According to Wi-Fi-related documents,13 it seems UMAC

means Upper MAC while LMAC means Lower MAC. These documents
also give an overview of how these abstraction layers seem to be stacked
in Intel Wi-Fi chips (see listing 7).

1 # define CPU1_CPU2_SEPARATOR_SECTION 0 xFFFFCCCC

2 # define PAGING_SEPARATOR_SECTION 0 xAAAABBBB

Listing 6. Definitions of section separators

1 ----------------------------------------+------------------

2 UMAC ( Upper Medium Access Controller ) | Host Interfaces

3 ----------------------------------------+------------------

4 LMAC ( Lower Medium Access Controller )

5 -----------------------------------------------------------

6 PHY ( Physical layer )

7 -----------------------------------------------------------

8 Wi -Fi Antenna

9 -----------------------------------------------------------

Listing 7. Stack of layers in the Wi-Fi chip (the host communicates with both
UMAC and LMAC)

iwlwifi also defines the notion of Paging Memory. The sections in
this Paging Memory are loaded using an interface different from the other
sections and described later in this article (cf. section 4.1).

All this knowledge gives a better understanding on how the sections
are grouped in the firmware file (listing 8).

1 Runtime code for CPU 1 ( LMAC ):

2 SEC_RT 00404000..004042 b8 (0 x2b8 =696 bytes )

3 SEC_RT 00800000..00818000 (0 x18000 =98304 bytes )

4 SEC_RT 00000000..00038000 (0 x38000 =229376 bytes )

5 SEC_RT 00456000..0048 d874 (0 x37874 =227444 bytes )

6

7 Initialization code for CPU 1 ( LMAC ):

8 SEC_INIT 00404000..004042 c8 (0 x2c8 =712 bytes )

9 SEC_INIT 00800000..008179 c0 (0 x179c0 =96704 bytes )

10 SEC_INIT 00000000..00024 ee8 (0 x24ee8 =151272 bytes )

11 SEC_INIT 00456000..00471 d04 (0 x1bd04 =113924 bytes )

12 SEC_INIT 00410000..00417100 (0 x7100 =28928 bytes )

13

14 Runtime code for CPU 2 ( UMAC ):

15 SEC_RT CPU1_CPU2_SEPARATOR_SECTION ("cc cc ff ff 00 00 00 00")

16 SEC_RT 00405000..004052 b8 (0 x2b8 =696 bytes )

17 SEC_RT c0080000 .. c0090000 (0 x10000 =65536 bytes )

18 SEC_RT c0880000 .. c0888000 (0 x8000 =32768 bytes )

19 SEC_RT 80448000..80455 ad4 (0 xdad4 =56020 bytes )

13 https://www.design-reuse.com/articles/39101/reusable-mac-design-for-

various-wireless-connectivity-protocols.html

https://www.design-reuse.com/articles/39101/reusable-mac-design-for-various-wireless-connectivity-protocols.html
https://www.design-reuse.com/articles/39101/reusable-mac-design-for-various-wireless-connectivity-protocols.html
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20

21 Paging code for CPU 2 ( UMAC ):

22 SEC_RT PAGING_SEPARATOR_SECTION ("bb bb aa aa 00 00 00 00")

23 SEC_RT 00000000..00000298 (0 x298 =664 bytes )

24 SEC_RT 01000000..0103 b000 (0 x3b000 =241664 bytes )

25

26 Initialization code for CPU 2 ( UMAC ):

27 SEC_RT CPU1_CPU2_SEPARATOR_SECTION ("cc cc ff ff 00 00 00 00")

28 SEC_INIT 00405000..004052 b8 (0 x2b8 =696 bytes )

29 SEC_INIT c0080000 .. c0090000 (0 x10000 =65536 bytes )

30 SEC_INIT c0880000 .. c0888000 (0 x8000 =32768 bytes )

31 SEC_INIT 80448000..80455 ad4 (0 xdad4 =56020 bytes )

Listing 8. Decoding of the sections in the firmware file, grouped by kind

2.3 Mapping the memory layout

There are some oddities in the list of the firmware sections presented
in listing 8. One of them is that some addresses start with 80 or c0 instead
of 00. Again, the Linux source code greatly helps to understand what is
going on: it defines FW_ADDR_CACHE_CONTROL to 0xC0000000 14 and uses
this value to mask the high bits out of some addresses.

During the study we first used these addresses as-is. At some point
we stumbled upon the ARC700 Memory Management Unit (MMU) and
found in its reference manual [1]:

The build configuration register DATA_UNCACHED (0x6A) describes
the Data Uncached region. Memory operations that access this
region will always be uncached. Instruction fetches that access the
same region will, however, be cached as this region relates to data
only.

This region, which is only present in builds with an MMU, is
fixed to the upper 1 GB of the memory map. As the upper 2
GB of the memory is the un-translated memory region, the Data
Uncached region is consequently both uncached and un-translated.
This makes this region suitable for e.g. peripherals. Note that this
region is active even if the MMU is disabled.

Addresses starting with c0 are located in the upper 1 GB of the chip
memory and are therefore uncached and un-translated references to the
memory located at the address given by the remaining bits. And addresses
starting with 80, located in the upper 2 GB of the memory, can be cached

14 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/iwl-drv.c#L552

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L552
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-drv.c#L552
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but are never translated by the MMU. For example, the section loaded at
address c0080000 is in fact loaded at physical address 00080000 and uses
high bits in order to bypass the MMU translation. This is illustrated in
figure 2.

00000000
...

3fffffff

40000000
...

7fffffff

80000000

cached
bfffffff

c0000000

uncached
ffffffff

Virtual address space

MMU Translation

No translation

00000000
...

3fffffff

Physical address space

Fig. 2. Virtual and physical address spaces of ARC700 microcontrollers

Moreover iwlwifi’s code contains references to the address of two Data
Close Coupled Memories (DCCM) and a Static RAM Memory (SMEM).15

This enables writing a map of the memory layout used by the Wi-Fi chip,
presented in figure 3. This figure includes some components which are
presented later in this document.

2.4 Verifying the signature

Is it possible to run arbitrary code on the Wi-Fi chip by modifying
the firmware file? Now that the layout of the file has been presented,
it is possible to try modifying any byte in a section. Doing so triggers
a failure reported by iwlwifi and prevents the loaded firmware from
starting (listing 9).

1 iwlwifi 0000:00:14.3: SecBoot CPU1 Status : 0 x3030003 ,

2 CPU2 Status : 0x0

Listing 9. Error message seen in the kernel log with a modified firmware

15 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/cfg/9000.c#L21

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/cfg/9000.c#L21
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/cfg/9000.c#L21
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00000000..00100000 Executable memory (maximum 1 MB)
00000000..00038000 Code used by CPU 1 (LMAC)
00060000..000611ca Loader code which enforces Secure Boot
00061e00..00061f00 Loader Secure Boot RSA public key
00080000..00090000 Code used by CPU 2 (UMAC)

00400000..00490000 SRAM (Static RAM, 576 KB)
00401000..00403000 Loader data, including its stack
00404000..004042c8 Code Signature Section for CPU 1 (LMAC)
00405000..004052b8 Code Signature Section for CPU 2 (UMAC)
00410000..00417100 Code used by CPU 1 Initialization (LMAC)
00422000..00448000 Pages used by CPU 2 (UMAC)
00448000..00455ad4 Code and data used by CPU 2 (UMAC)
00456000..0048d874 Code and data used by CPU 1 (LMAC)
0048f000..00490000 Sensitive data used by CPU 2 (UMAC,

external read access is denied)

00800000..00818000 DCCM (Data Close Coupled Memory, 96 KB)
(data used by CPU 1, LMAC)

00816000..00817000 Stack for LMAC CPU (4096 bytes)

00880000..00888000 DCCM 2 (32 KB)
(data used by CPU 2, UMAC)

00886014..00886334 Stack for task IDLE (800 bytes)
00886334..00886d34 Stack for task MAIN (2560 bytes)
00886d34..00887734 Stack for task BACKGROUND (2560 bytes)
00887734..0O887ffc Stack for interrupt handlers (2248 bytes)

00a00000..00b00000 Hardware Registers (for peripherals)
00a03088..00a0308c Feature flags, including debug mode
00a04c00..00a04c84 Access bits for memory regions
00a24800..00a24b00 RSA2048 coprocessor
00a25000..00a25060 SHA256 coprocessor
00a38000..00a40000 NVM (Non-Volatile Memory)

Fig. 3. Map of the physical memory layout used by the studied Wi-Fi chip

In the error message, SecBoot likely means Secure Boot, a technology
used to ensure that only authorized code can run on a platform. How
is the firmware authenticated? Usually there is some kind of signature,
which is verified against a public key.

Looking at the sections from listing 8 again, they can be grouped
in five parts where each starts with a small section, located at address
0x00404000 for the LMAC CPU, at 0x00405000 for the UMAC CPU
and at 0x00000000 for the paging memory. This section is not parsed by
iwlwifi but it is small enough to be able to guess its layout:

— 0x30 bytes: header, including the build date at offset 0x14 (for
example the bytes 28 01 21 20 encode the date 2021-01-28)

— 0x50 bytes: zeros (probably some padding)
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— 0x100 bytes: RSA-2048 modulus, in Little Endian
— 4 bytes: RSA exponent, always 0x10001

— 0x100 bytes: RSA-2048 signature, in Little Endian
— 4 bytes: number of other sections of the group, in Little Endian
— For other sections of the group: 0x10 bytes containing four 32-bit

Little Endian integers {7, size + 8, address, size}

The signature is a RSA PKCS#1 v1.5 signature using SHA256 on
the content of every section, including the small first one without the
signature field. This confirms that the code loaded on the chip is actually
signed.

By the way, even though iwlwifi does not parse the small section, it
includes some references to something named CSS. The meaning of this
acronym is not documented but it likely is Code Signature Section.

This section contains the public key used to verify the signature.
Compared to usual secure boot implementations, this is normal. Indeed,
some chips only contain a fingerprint of the public key, for example in
their fuses, and verify that the given public key matches this fingerprint.
In this case the public key has to be provided. But some chips could forget
to check the public key, which would enable attackers to easily bypass the
authentication. With the studied Intel Wi-Fi chip, modifying the firmware
and re-signing it with a custom key did not work (and triggered the same
error as in listing 9).

2.5 Extracting the firmware code

The previous parts detailed the content of a firmware file, the layout
of the memory and the way the code was authenticated. This knowledge
is more than enough to extract the code which actually runs on the chip.
A last question remains before beginning to analyze it: which Instruction
Set Architecture (ISA) is the code using? A few years ago a tool named
cpu_rec.py was published exactly for this kind of need [5]. It guessed
that the code used the ARCompact instruction set. This instruction set
was supported by IDA Pro disassembler and the generated assembly code
seemed to be meaningful.

Moreover, when downloading the Intel Windows drivers,16 the archives
contain a text file express_logic_threadx.txt describing license amend-
ments for Express Logic ThreadX (listing 10). This file indicates that
wireless connectivity solutions developed by Intel could use ARC 605,
ARC7 and ARC6, which belong to the ARCompact family.

16 https://www.intel.com/content/www/us/en/download/18231/intel-proset-

wireless-software-and-drivers-for-it-admins.html (accessed on 2022-01-17)

https://www.intel.com/content/www/us/en/download/18231/intel-proset-wireless-software-and-drivers-for-it-admins.html
https://www.intel.com/content/www/us/en/download/18231/intel-proset-wireless-software-and-drivers-for-it-admins.html
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1 Express Logic ThreadX License Amendment / Addendum Summary

2 [...]

3 1/9/2008

4 Adds ARC 605

5 [...]

6 7/11/1012

7 Modifications made by this amendment apply only to Intel group

that develops wireless connectivity solutions

8 Adds ARC7

9 [...]

10 6/16/2013

11 Retroactively replaces ARM7 ( Amendment 4) with ARC6

Listing 10. Extract of express_logic_threadx.txt

To better understand the logic of the firmware, support for these
instruction sets was added to Ghidra. This work was already presented at
SSTIC 2021 [6].

3 Vulnerability Research

3.1 Executing arbitrary code

Talking to the Wi-Fi chip through debugfs The previous parts
focused on static analysis, using files and source code. When analyzing a
system, it is useful to also have some way to query its state, debug some
code, etc. For Intel’s Wi-Fi chip, iwlwifi and iwlmvm modules expose
many files in the debug filesystem. For example, iwlmvm/fw_ver contains
information about the firmware which was loaded (listing 11).

1 $ DBGFS =/ sys/ kernel / debug / iwlwifi /0000:00:14.3

2 $ cat $DBGFS / iwlmvm / fw_ver

3 FW prefix : iwlwifi -9000 -pu -b0 -jf -b0 -

4 FW: release / core43 ::6 f9f215c

5 Device : Intel (R) Wireless -AC 9560 160 MHz

6 Bus: pci

Listing 11. Reading the firmware version from Linux debugfs

Among these files, iwlmvm/mem enables reading the memory of the
Wi-Fi chip (listing 12)!

1 $ dd if= $DBGFS / iwlmvm /mem bs =1 count =128 |xxd

2 00000000: 2020 800 f 0000 4000 2020 800 f 0300 e474 .... @. ..... t

3 00000010: 2020 800 f 0300 3837 2020 800 f 0000 c819 ....87 ......

4 00000020: 6920 0000 6920 4000 6920 0000 6920 4000 i ..i @.i ..i @.

5 00000030: 2020 800 f 4700 14 b6 6920 0000 6920 4000 ..G...i ..i @.

6 00000040: 6920 0000 4 a20 0000 4a21 0000 4a22 0000 i ..J ..J!..J"..

7 00000050: 4a23 0000 4a24 0000 4a25 0000 4a26 0000 J#.. J$ ..J%..J&..

8 00000060: 4a27 0000 4a20 0010 4a21 0010 4a22 0010 J ’..J ..J!..J"..
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9 00000070: 4 a23 0010 4a24 0010 4a25 0010 4a26 0010 J#.. J$ ..J%..J&..

Listing 12. Reading the beginning of the chip memory

The kernel module also implements write operations with iwlmvm/mem

but they do not seem to work. During the study we discovered that some
Wi-Fi chips could be booted in debug mode, where writing to iwlmvm/mem

would work fine. However, we only had access to Wi-Fi chips in production

mode, where writing the memory was forbidden.
The debug filesystem also provides another way to read the chip

memory with a file named iwlmvm/sram. This interface provided by this
file only allows reading data from the chip, not writing to it.

Back to the debug filesystem, another file interested us,
iwlmvm/prph_reg. The Wi-Fi chip contains many peripheral registers
(sometimes called hardware registers) located at addresses 0x00a*****

and this file enabled reading them. Such registers would usually contain
state information, but in the case of the studied Wi-Fi chip, they also
included the current Program Counter (pc) of the processors! The address
of these interesting registers are defined in Linux 17 (listing 13). Even
though three pc registers are defined, only the first two contain non-zero
values on the studied Wi-Fi chip (listing 14): one for the UMAC processor
and another for the LMAC processor, which this document described
previously (in section 2.2).

1 # define UREG_UMAC_CURRENT_PC 0 xa05c18

2 # define UREG_LMAC1_CURRENT_PC 0 xa05c1c

3 # define UREG_LMAC2_CURRENT_PC 0 xa05c20

Listing 13. Definitions of program counter registers in Linux

1 $ echo 0 xa05c18 > $DBGFS / iwlmvm / prph_reg

2 $ cat $DBGFS / iwlmvm / prph_reg

3 Reg 0 xa05c18 : (0 xc0084f40 )

4

5 $ echo 0 xa05c1c > $DBGFS / iwlmvm / prph_reg

6 $ cat $DBGFS / iwlmvm / prph_reg

7 Reg 0 xa05c1c : (0 xb552 )

8

9 $ echo 0 xa05c20 > $DBGFS / iwlmvm / prph_reg

10 $ cat $DBGFS / iwlmvm / prph_reg

11 Reg 0 xa05c20 : (0 x0)

Listing 14. Reading the values of program counter registers

17 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/iwl-prph.h#L373

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-prph.h#L373
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-prph.h#L373
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Talking to the Wi-Fi chip through PCIe The previous section
described very useful files in the Linux debug filesystem. How are they
actually implemented? More precisely, how is the operating system (Linux)
able to read the memory and the peripheral registers of the Wi-Fi chip? An-
swering these questions is important to understand the security boundaries
and how running arbitrary code on the chip is prevented.

Reading iwlmvm/prph_reg makes the Linux kernel execute the func-
tion iwl_trans_pcie_read_prph.18 A simplified implementation of this
function is presented in listing 15.

1 // drivers / net/ wireless / intel / iwlwifi /iwl - csr .h

2 /*

3 * HBUS (Host - side Bus )

4 *

5 * HBUS registers are mapped directly into PCI bus space , but are

6 * used to indirectly access device ’s internal memory or registers

7 * that may be powered - down .

8 */

9 # define HBUS_BASE (0 x400)

10

11 /*

12 * Registers for accessing device ’s internal peripheral registers

13 * (e.g. SCD , BSM , etc .). First write to address register ,

14 * then read from or write to data register to complete the job.

15 * Bit usage for address registers ( read or write ):

16 * 0 -15: register address ( offset ) within device

17 * 24 -25: (# bytes - 1) to read or write (e.g. 3 for dword )

18 */

19 # define HBUS_TARG_PRPH_WADDR ( HBUS_BASE +0 x044)

20 # define HBUS_TARG_PRPH_RADDR ( HBUS_BASE +0 x048)

21 # define HBUS_TARG_PRPH_WDAT ( HBUS_BASE +0 x04c)

22 # define HBUS_TARG_PRPH_RDAT ( HBUS_BASE +0 x050)

23

24 // drivers / net/ wireless / intel / iwlwifi / pcie / trans .c

25 u32 iwl_trans_pcie_read_prph ( struct iwl_trans *trans , u32 reg) {

26 // Here , 0 x03000000 means " read 3+1 = 4 bytes "

27 reg = 0 x03000000 | (reg & 0 x000FFFFF );

28

29 // hw_base address mapping the MMIO space of the PCIe endpoint

30 writel (reg , trans -> trans_specific -> hw_base + HBUS_TARG_PRPH_RADDR );

31 return readl (trans -> trans_specific -> hw_base + HBUS_TARG_PRPH_RDAT );

32 }

Listing 15. Implementation of iwl_trans_pcie_read_prph

In short, iwl_trans_pcie_read_prph writes a normalized register
index to some offset of the MMIO space (line 30 of listing 15) and reads back
a 32-bit value from another offset (line 31). These offsets are documented
as being part of a Host-side Bus interface (HBUS) and the underlying

18 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/pcie/trans.c#L1833

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L1833
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L1833
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implementation seems to be directly in hardware (it does not involve the
firmware). This impression is strengthened by the fact that this interface
can be used to read the program counters of the chip processors. Doing so
shows values which change so much that this indicates that neither the
UMAC or the LMAC processor is executing code to process host requests
to read peripheral register values. This interface is described in figure 4.

iwlwifi also defines offsets (macros HBUS_TARG_MEM_RADDR,
HBUS_TARG_MEM_RDAT, etc.) and functions (iwl_trans_pcie_read_mem

and iwl_trans_pcie_write_mem) to access the chip memory. Of course
these functions cannot be used to write to arbitrary memory locations at
runtime but their use by functions such as iwl_trans_pcie_txq_enable

indicates that some regions of the firmware are indeed writable from
Linux.

Linux user space
/sys/kernel/debug/.../iwlmvm/prph_reg

Linux kernel
iwlwifi module

Wi-Fi chip PCIe endpoint
MMIO address space:

0x40c...0x41c: HBUS registers to read/write memory
0x444...0x450: HBUS registers to read/write registers

Wi-Fi chip registers
0xa05c18: LMAC pc

0xa05c1c: UMAC pc

Wi-Fi chip memory
(cf. figure 3)

PCIe bus

Fig. 4. Interaction between Linux debug filesystem and the Wi-Fi chip

Nevertheless, iwlmvm/mem in the debug filesystem does not use this
interface. Instead the implementation of the read operation (in function
iwl_dbgfs_mem_read 19) boils down to calling iwl_mvm_send_cmd(mvm,

&hcmd); with a host command in the parameter hcmd. This function calls
iwl_trans_pcie_send_hcmd to enqueue a command in queues that the
Wi-Fi chip reads using Direct Memory Access (DMA). This interface
is shared with every command that the Linux kernel sends to the chip

19 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/mvm/debugfs.c#L1799

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/mvm/debugfs.c#L1799
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/mvm/debugfs.c#L1799
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(for example to request scanning access points, to configure some radio
properties, etc.) and we can expect that messages sent through it are
processed by the firmware.

When iwlwifi and iwlmvm prepare a command for the Wi-Fi chip,
they use a structure named iwl_host_cmd 20 where they fill the command
ID and parameters. The identifiers consist of two bytes, defining a group
of commands (enum iwl_mvm_command_groups 21) and a command inside
a group. For example, the command used to read memory is:

— group DEBUG_GROUP = 0xf,
— command LMAC_RD_WR = 0 or UMAC_RD_WR = 1, to read memory

from the LMAC or the UMAC processor.

This identifier is packed into a 4-byte structure iwl_cmd_header 22

before being sent to the chip. With this information, it should be possible
to find the code processing such commands in the firmware.

Arbitrary Code Execution The host manages the chip through a
set of commands mentioned previously. The command IDs as well as
the associated request and response structures are declared in the kernel
module source code.

The firmware implementation of these commands was reverse-
engineered, allowing us to find undocumented commands. One of these
commands (of ID 0xf1) receives host data in 2 steps:

1. A first structure made of a size and a flag (struct input { size_t

count; int flag; }) is received. The size field is actually the
expected size of the next received data.

2. Data is then read directly on the stack, leading to a stack overflow
if the size specified in the first command is larger than the size of
the stack buffer.

In order to trigger the vulnerability, we based our exploit on
ftrace-hook. It allows sending arbitrary commands to the chip by hijack-
ing a single function from the Linux module: iwl_mvm_send_cmd(). The
exploit works in 2 steps:

20 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/iwl-trans.h#L207
21 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/api/commands.h#L32
22 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/api/cmdhdr.h#L65

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-trans.h#L207
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/iwl-trans.h#L207
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/commands.h#L32
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/commands.h#L32
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/cmdhdr.h#L65
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/cmdhdr.h#L65
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1. A shellcode is first put somewhere at a fixed address in the heap of
the firmware using legit commands. Reverse engineering allowed us
to discover a few commands which copy large amounts of data from
the host to the heap without alteration, for later use. Optionally,
the debugfs mechanism can be used to ensure that the shellcode is
indeed written to the expected address.

2. The vulnerability is then triggered: the stack overflow vulnerability
allows the attacker to take control of pc and redirect the execution
to the shellcode previously put in the heap.

We developed a shellcode which enables the global debug mode flag.
This flag is notably checked by the firmware iwlmvm/mem implementation
to tell whether write access is allowed, which eventually allows us to read
and write memory using this convenient debugfs mechanism.

This stack overflow vulnerability was successfully exploited in the
firmware version 34.0.1. This vulnerability doesn’t exist anymore in the
firmware version 46.6f9f215c.0.

3.2 Secure Boot and bypassing it

Locating the Loader The previous sections presented how we interacted
with Intel Wi-Fi chips from Linux and how the code is loaded from
firmware files. During the study we wondered whether the verification of
the authenticity of the code is implemented in hardware or in some code
running on the LMAC or the UMAC processors. Indeed it is common for
microcontrollers to have a Boot ROM with code which authenticates the
loaded firmware before running it. If an Intel Wi-Fi chip had such code,
how could we find it?

Actually on the studied chip, this is easy:
— the Linux kernel module can read the memory of the chip,
— and the module can also read the program counter registers (pc)

of the chip processors.
We patched iwlwifi to dump parts of the memory and to record the

pc values right before the firmware was loaded. We found out that most
memory regions contain random data which change at every boot, except
two areas:

— one between addresses 0x00402e80 and 0x00402fff,
— one between addresses 0x00060000 and 0x00061eff.
The second area contains valid ARCompact instructions and

the recorded pc values alternate between 0x0006107e, 0x00061092,
0x00061098 and a few other addresses. So we knew we dumped some
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interesting code. Moreover the first instructions of this area include mov

sp, 0x00403000, defining the stack pointer to the top of the first area.

The dumped code is quite small (4554 bytes) and, surprisingly, it does
not include any implementation of RSA or SHA256 algorithms. How could
it verify the firmware signature?

Studying more closely the data we got shows that at address
0x00061e00 is located the same RSA2048 public key as in the firmware
file. This key is used by a function at 0x00060fa8. After more analysis
we found out that the dumped code uses this key with some hardware
registers in the following sequence:

— Write 1 and 0 to the peripheral register located at 0x00a24b08.
— Write 3 to 0x00a24b00.
— Write the 256 bytes of the public key to 0x00a24900, 0x00a24901,

etc.
— Write the 256 bytes of the firmware signature to 0x00a24800,

0x00a24801, etc.
— Write 1 to 0x00a2506c and 0x00a25064.
— Wait for the lowest bit of peripheral register located at 0x00a24b04

to become zero.
— Read the decrypted RSA signature from 0x00a24a00.
— Write 1 to 0x00a20804.

This code probably drives a coprocessor which decrypts RSA2048
signatures in PKCS#1 v1.5 format. Other peripheral registers are used
in a similar way, to compute the SHA256 digest of the firmware being
loaded. Such coprocessors are usually called cryptographic accelerators

and it is normal to see one on a Wi-Fi chip, which could offload some
cryptographic operations to dedicated hardware.

This new knowledge of the cryptoprocessor enabled looking for code
referencing its addresses in the firmware. And indeed the UMAC code
uses the cryptoprocessor in a similar way to verify some signatures, for
example when processing FW_PAGING_BLOCK_CMD commands.

Bypassing Secure Boot Linux loads a firmware on the Wi-Fi chip by
sending its sections. We previously described (in section 2.4) that it is
not possible to directly modify the content of these sections. By reverse-
engineering the code of the loader, we found the code which computed
a SHA256 digest over all the sections. The loader needs to implement
this to verify a RSA-2048 signature embedded in the first section (using a
cryptoprocessor).
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This code does not wait for the full firmware to be received before
computing its digest, but updates the SHA256 state after each section is
received. Does it mean that an attacker can modify a section after it has
been verified? We patched the Linux kernel in order to send a section twice:
once with the original content, and a second time with some modifications.
This failed. The firmware started successfully but the modifications were
ignored. Digging further, we discovered that the loader modifies some
hardware registers of the chip after receiving a section. We suppose this
locked some memory pages to make them no longer writable from Linux.

In short, when the firmware loader starts, Linux is allowed to write to
most of the memory of the chip, and the memory progressively becomes
read-only while the firmware is loaded. But the memory does not solely
contain the firmware: it also contains the loader! And trying to write to
the loader data actually works!!

More precisely, when we call Linux’s function
iwl_trans_pcie_write_mem to write some data at 0x00402e80

before loading the firmware, we manage to read the new data back (using
iwl_trans_pcie_read_mem). The stack of the loader is located at this
address, so it is possible to overwrite some return address to make the
loader execute our code (which can be written using the normal firmware
loading interface). The attack therefore consists in writing a modified
firmware to the memory of the chip, replacing a return address with zero
in the stack of the loader, and notifying the loader that the firmware is
loaded. This works fine on the first Wi-Fi chip studied (Intel Dual Band
Wireless AC 8260), but not on the second one (Intel Wireless-AC 9560
160MHz).

On the second chip, we observe that the value we read back after
modifying the stack is successfully modified, but the loader seems to
ignore it. Another thing was strange: despite the loader using some global
variables in memory, we do not see these variables change when reading
their values. We suppose this is caused by a caching mechanism: the
content of the stack is used from a cache memory of the Wi-Fi chip.
As the read/write access from the Linux driver modifies the physical
memory directly without invalidating the cache, the chip ignores these
modifications.

To fix the attack, we modified the firmware image in order to force
cached data to be flushed to the memory. One way to achieve this consists
in increasing the number of sections which are loaded by the chip. This
number is actually present in the first section transmitted to the chip
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(the one which contains the signature). By declaring that the firmware
contains 196 sections (listing 16), the behavior of the chip changes:

— When trying to load this firmware directly, the chip refuses to boot
and a SecBoot message appears in the kernel log. This is expected,
because the modified section is included in the signed data.

— When trying to load this firmware while overwriting a code address
on the stack, the chip successfully boots.

1 import struct

2

3 old_section = get_first_section ("iwlwifi -9000 -pu -b0 -jf -b0 -46. ucode ")

4 new_section = (

5 old_section [:0 x284 ] + # Header with RSA signature

6 # Define 196 fake sections at address 0 with size 0.

7 struct . pack ("<I", 196) +

8 struct . pack ("<IIII", 7, 8, 0, 0) * 196

9 )

Listing 16. Extract of a Python script which modifies the first section

More precisely we identified in the dumped stack, at 0x00402fc0, the
code address 0x00060f7a. This address is right after a function call,23 in
the code of the firmware (listing 17).

1 00060 f70 f1 c0 push_s blink

2 00060 f72 66 0c 8f ff bl FUN_000603d4 ( initialize things )

3 00060 f76 e6 0b 8f ff bl FUN_00060358 ( compute SHA256 )

4 (the value at 0 x00402fc0 is here )

5 00060 f7a 7e 0d 8f ff bl FUN_000604f4 ( verify RSA signature )

6 00060 f7e d1 c0 pop_s blink

7 00060 f80 e0 7e j_s blink

Listing 17. Attacked function of the Wi-Fi chip loader (ARCompact assembly)

We perform the attack by modifying the function
iwl_pcie_load_cpu_sections_8000 24 (in the iwlwifi kernel module)
to write zero to 0x00402fc0 (listing 18). This actually bypasses the call
to the function which verifies the RSA signature and directly starts the
loaded firmware.

1 iwl_trans_grab_nic_access ( trans );

2 unsigned int iterations ;

3 for ( iterations = 0; iterations < 70000; iterations ++) {

4 iwl_write32 (trans , HBUS_TARG_MEM_WADDR , 0 x00402fc0 );

23 In ARCompact, instruction bl peforms a branch with link operation, used to call a
function.

24 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/pcie/trans.c#L719

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L719
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/pcie/trans.c#L719
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5 iwl_write32 (trans , HBUS_TARG_MEM_WDAT , 0);

6 }

7 iwl_trans_release_nic_access ( trans );

Listing 18. Loop added to iwlwifi to bypass the signature verification

Being able to load arbitrary code on a Wi-Fi chip greatly helps ana-
lyzing how it works. In the remaining parts of this article, we will present
some experiments enabled by this access.

4 Use Cases and Practical Applications

4.1 Understanding the Paging Memory

Going beyond physical memory The studied firmware file defined
a section at address 0x01000000 with 241664 bytes (cf. listing 8 in sec-
tion 2.2). Contrary to the other sections, this one is not loaded directly in
the memory of the chip. Instead, iwlwifi allocates specific buffers in the
main memory and transmits their physical addresses to the chip, using
a FW_PAGING_BLOCK_CMD command in function iwl_send_paging_cmd.25

This means that this code is loaded once the LMAC and the UMAC
processors have already been started. At this point, we wondered: where
is this code stored in the Wi-Fi chip? How is it authenticated?

The second question is simple to answer: the implementation of
the FW_PAGING_BLOCK_CMD command in the UMAC code (at address
0x80452184) reads all the pages using DMA transfers and verify a
RSA2048-SHA256 signature provided by a Code Signature Section. How-
ever, all DMA transfers target the same 4096-byte page on the memory of
the chip, at 0x00447000. So the data is not actually kept by the chip.

The host physical addresses of the blocks are saved in a structure
iwl_fw_paging_cmd 26 at address 0xc0885774. We retrieve the content
of the structure from the chip using the debug filesystem (cf. section 3.1)
and decode it according to the structure definition (listing 19).

1 struct iwl_fw_paging_cmd at 0 xc0885774 :

2 * flags = 0 x303 : 0 x200 = secured , 0 x100 = enabled , 3 pages in last block

3 * block_size = 15 (0 x8000 = 32768 bytes /block , 8 pages / block )

4 * block_num = 8

5 Block addresses :

6 Host phys 0 x10b976000 = Code Signature Section

25 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/paging.c#L232
26 https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/

intel/iwlwifi/fw/api/paging.h#L22

https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/paging.c#L232
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/paging.c#L232
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/paging.h#L22
https://elixir.bootlin.com/linux/v5.11/source/drivers/net/wireless/intel/iwlwifi/fw/api/paging.h#L22


22 Ghost in the Wireless, iwlwifi edition

7 Host phys 0 x10b9f0000 = Paging mem 0 x01000000

8 Host phys 0 x10b9f8000 = Paging mem 0 x01008000

9 Host phys 0 x10ba00000 = Paging mem 0 x01010000

10 Host phys 0 x10ba08000 = Paging mem 0 x01018000

11 Host phys 0 x10ba10000 = Paging mem 0 x01020000

12 Host phys 0 x10ba18000 = Paging mem 0 x01028000

13 Host phys 0 x10ba20000 = Paging mem 0 x01030000

14 Host phys 0 x10ba28000 = Paging mem 0 x01038000

Listing 19. Extracting the configuration of the paging memory, from the chip

If the chip does not keep all pages when processing the
FW_PAGING_BLOCK_CMD command, how is it able to use this memory?
By accessing memory through the debug filesystem, we confirm that the
memory located at addresses 0x01000000, 0x01008000, etc. is indeed
readable and writable. The answer is: by using the Memory Management
Unit!

Indeed the UMAC processor defined handlers for the exception vec-
tors TLBMissI and TLBMissD (at addresses 0xc0080108 and 0xc0080110)
which occur when a memory access fails. These handlers integrate a com-
plex state machine which loads the requested memory page from the host
using DMA, in a memory area between 0x00422000 and 0x00447fff. To
confirm that the analysis is correct, we read the global variables used by
this state machine, which include an array at 0x804508b8. For example,
in an experiment this array starts with the bytes ff ff 10 ff 0b ff.
Every byte is related to a virtual memory page.

— The first byte is 0xff, meaning that the first page (at 0x01000000)
is not currently mapped by the chip.

— The second byte was 0xff, meaning that the page at 0x01001000

is not mapped.
— The third byte, 0x10, means that the page at 0x01002000

is mapped at physical address 0x00422000 + 0x10*0x1000 =

0x00432000 of the chip. This is confirmed by reading the data
stored at this address directly.

— etc.

The Wi-Fi chip has space for 38 4KB-pages and the firmware defines
59 pages so it is impossible to load all of them simultaneously. Moreover
these regions contain global variables which are updated by the firmware.
How does the firmware keep the modified bytes when some room is needed
to load a newly requested page? By sending another DMA request to
write the modified bytes to the host memory. And indeed, using chipsec
to read the host physical memory, we observe that the buffer allocated for
this Paging memory is modified.
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In short, the code running on the UMAC processor uses its MMU to
extend its memory capacity, by relying on DMA transfers with the host
memory to store the data which do not fit.

Protecting the integrity of the Paging Memory Once we understood
the mechanism of the Paging Memory, we tried an obvious attack: we
modified a byte in the host memory and made the Wi-Fi chip request it
by issuing a command to read memory. This failed (the UMAC reported a
NMI_INTERRUPT_UMAC_FATAL error and iwlwifi restarted the chip), and
we did not understand why. How is the integrity of the Paging Memory
guaranteed?

The function which handles command FW_PAGING_BLOCK_CMD performs
some operations that we first overlooked:

— It writes the address 0x8048f400 in the peripheral register
0x00a0482c and 0x1000 in 0x00a0480c.

— Before receiving a page (to verify the signature), it writes the
physical address of the received page in 0x00a04808, the index of
the virtual page in 0x00a04804, and 1 in 0x00a04800.

— After receiving a page, it waits for some bits in the peripheral
register 0x00a04800 to become set.

These registers are also used near the code which performs DMA
requests. Maybe they are used to compute some digest of the data? Where
would these digests be stored? Maybe at the first address which is used,
0x8048f400 (which is the physical address 0x0048f400). Surprisingly, the
content at this location is not readable using the debug commands used
by iwlmvm/mem. This limitation is due to a check which forbade reading
any data between 0x0048f000 and 0x0048fffff. Fortunately we are not
stopped by this, as we are able to load a modified firmware without this
restriction.

After more experiments, we discover that 0x0048f400 holds a table
of 32-bit checksums for each 4 KB page of the Paging Memory. The
checksum of the first page (whose virtual address is 0x01000000) is located
at 0x0048f400, the checksum of the second one at 0x0048f404, etc. In
an experiment, we obtain that:

— the checksum of a page with 4096 zeros is 00 00 00 00,
— A page with 4095 zeros and 01 has checksum 11 ac d8 7f

— A page with 4095 zeros and 02 has checksum 22 58 b1 ff

— A page with 4095 zeros and 03 has checksum 33 f4 69 80

— A page with 4095 zeros and 04 has checksum c9 b0 62 ff
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These values are not so random: they are linear with the input! By
XOR-ing the results of the lines with 01 and 02, we obtain the result
written in the line with 03. Also taking the bytes of the line with 01

and shifting them left one bit gives the result of the line with 02, with
a bit moved from ac to b1. Continuing this trail, we found out that the
computation involved a 32-bit Linear Feedback Shift Register (LFSR) on
the input bytes considered as a sequence of 32-bit Little Endian integers,
with polynomials 0x10000008d. But it is not only an LFSR, as values
change every time the chip is reset.

More experiments reduce the algorithm to the Python function pre-
sented in listing 20. Discussions within our awesome team made us under-
stand we were watching a scheme named Universal Message Authentication

Code, and our implementation actually matches the example written on
Wikipedia.27

1 def checksum (page , secret_key ):

2 # Return the checksum of a 4096 - byte page with a 1024 - int key

3 result = 0

4 for index_32bit_word in range (1024) :

5 page_bytes = page [ index_32bit_word *4: index_32bit_word *4+4]

6 page_value = int. from_bytes ( page_bytes , " little ")

7

8 sec = secret_key [ index_32bit_word ]

9 for bit_pos in range (32):

10 if page_value & (1 << bit_pos ):

11 result ^= sec

12

13 # Linear Feedback Shift Register with 0 x10000008d

14 if sec & 0 x80000000 :

15 sec = (( sec & 0 x7fffffff ) << 1) ^ 0x8d

16 else :

17 sec = sec << 1

18 return result

Listing 20. Python implementation of the checksum algorithm used to ensure
the integrity of the Paging Memory

This algorithm is quite weak in this case: in our study we were able to
request the checksums for pages containing bytes 01 00...00, 00 00 00

00 01 00...00, etc., which directly leaks the 1024 integers used in the
secret key. With this key, it is simple to modify a page in a way which
does not modify the checksum.

In short, the integrity of the Paging Memory, which prevents the Linux
kernel from modifying its content, is guaranteed by a 32-bit checksum
algorithm, a secret key generated each time the chip boots and the impos-
sibility to read the stored checksums (we achieved this by compromising

27 https://en.wikipedia.org/wiki/UMAC#Example (accessed on 2022-01-17)

https://en.wikipedia.org/wiki/UMAC#Example
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the integrity of the firmware beforehand). So we did not discover a vulner-
ability there, but a way to leverage future arbitrary-read vulnerabilities
into arbitrary code execution on the Wi-Fi chip.

4.2 Instrumentation, Tooling and Fuzzing

Debugger A debugger has been developed to make the dynamic analysis
of some pieces of firmware code easier.

A shellcode is first written in a part of uninitialized firmware memory.
The first instruction of the debugged code is modified to redirect the
firmware execution to the shellcode. The shellcode waits in a loop for
custom commands from the host to:

— read and write LMAC and UMAC CPU registers,
— read and write from/to memory,
— resume the execution of the firmware.

In order to make debugging faster, an experiment has been conducted
with QEMU to redirect the execution of the debugged code in QEMU,
and forward the memory and register accesses to the debugger. Slight
modifications of QEMU’s core are required to allow QEMU’s plugin system
to write to memory.

Nevertheless, a few issues are encountered:

— Firmware timers are triggered at regular intervals, disturbing de-
bugging. Disabling these timers leads to unexpected side effects.

— Extension Core Registers are modified by the hardware even if
executed instructions don’t reference them.

— A few ARC700 instructions must be fixed or added to QEMU.

Traces Once secure boot is disabled and unsigned firmware can be loaded,
the firmware can be patched to change the behavior of some functions. In
order to facilitate firmware analysis, a tracing mechanism was developed
to tell dynamically which functions are executed.

The list of all firmware functions is retrieved thanks to a custom
Ghidra script. These functions are patched to replace the first prologue
instruction (push_s blink) with the instruction trap_s 0. The code of
the associated interrupt handler is replaced to store the address of the
instruction which triggered the interrupt, in a buffer shared with the host.

This mechanism allows to gather every function executed by the
firmware, but it’s slightly more complicated on the UMAC processor:

— The instruction trap_s 0 triggers an unrecoverable machine check

exception. An invalid instruction seems to trigger a different in-
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terrupt handler, but it can also be replaced to store the faulty
instruction.

— Some functions can’t be instrumented because triggering an in-
terrupt during their execution seems to lead to a machine check

exception, probably because of a double fault.

On-Chip Fuzzing In order to find vulnerabilities, the code of the
firmware has been modified to hook some functions related to Wi-Fi
packets parsing and fuzz randomly input parameters. While it indeed
leads to crashes, these functions use hardware registers which make crashes
bound to the state of the card. Crashes are thus difficult to reproduce.
Moreover, some checks on packet validity seem to be done by the hard-
ware, before packets are handled by the firmware. These crashes can’t be
reproduced through remote frame injection.

4.3 Initial crash analysis

Further analysis showed that the initial bug that led to this study isn’t
exploitable. It’s a crash of the LMAC CPU because the firmware doesn’t
expect to receive TDLS Setup Request commands from the host, while
the device seems to support TDLS (Tunnel Direct Link Setup, listing 21).

1 $ iw phy | grep -i tdls

2 * tdls_mgmt

3 * tdls_oper

4 Device supports TDLS channel switching

Listing 21. Querying TDLS support on the first studied chip

Several users reported this crash on the Kernel Bug Tracker 28 and
the bug is actually fixed since firmware update 36.29 As explained by the
maintainer in this comment:

Anyway, the new firmware has the fix: we don’t advertise TDLS

anymore.

It’s worth noting that even if a firmware update is available, some
Linux distributions don’t include it. For instance, this crash can reliably
be triggered remotely with a single Wi-Fi packet targeting an up-to-date
Ubuntu 18.04, leading to the reboot of the Wi-Fi firmware.

28 https://bugzilla.kernel.org/show_bug.cgi?id=203775
29 https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-

firmware.git/commit/?id=5157165f22041346b3a82e12ba072d456777fdf2

https://bugzilla.kernel.org/show_bug.cgi?id=203985#c3
https://bugzilla.kernel.org/show_bug.cgi?id=203775
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/commit/?id=5157165f22041346b3a82e12ba072d456777fdf2
https://git.kernel.org/pub/scm/linux/kernel/git/firmware/linux-firmware.git/commit/?id=5157165f22041346b3a82e12ba072d456777fdf2
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5 Conclusion

This journey studying Intel Wi-Fi chips was incredible. We did not
expect to bypass the secure boot mechanism of the chip, and this achieve-
ment opened the door to many new possibilities. Most importantly, we can
now instrument the firmware to better understand some undocumented
parts.

While this document is quite large, it does not include some work
which was also done: studying how the WoWLAN (Wake-on-Wireless
Local Area Network) feature is implemented, how ThreadX operating
system is used by the UMAC code, how the chip really communicates
with the host using DMA, how fragmented Wi-Fi frames are parsed, how
the LMAC configures a MPU (Memory Protection Unit), etc. In the
future we will likely continue looking for vulnerabilities in the Wi-Fi radio
interface. Future work can also include how the Wi-Fi part of the chip
interacts with the Bluetooth part. Indeed, all studied chips also provide
a Bluetooth interface which seems to require some coordination with
the Wi-Fi firmware to operate. Another area of interest could be the
interaction between the Wi-Fi chip and Intel CSME (Converged Security
and Management Engine) for AMT (Active Management Technology):
the iwlwifi module was modified in Linux 5.17-rc1 (released in January
2022) to document how this works.30

We would like to thank our employer Ledger for letting us work on
this exciting topic, Intel developers for providing useful documentation in
iwlwifi and Microsoft for publishing the ThreadX source code.31

Finally, we hope that the publication of this article will lay the ground-
work for helping other researchers to dive into that topic.

A Appendix: glossary

— BAR: Base Address Register
— CSS: (probably) Code Signature Section (a firmware section which

contains metadata about other sections, including a signature)
— DMA: Direct Memory Access (a way to transmit data between two

devices without running code on a processor)
— DCCM: Data Close Coupled Memory (some kind of memory)
— LMAC: Lower Medium Access Controller

30 https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/

commit/?id=2da4366f9e2c44afedec4acad65a99a3c7da1a35
31 https://github.com/azure-rtos/threadx/

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2da4366f9e2c44afedec4acad65a99a3c7da1a35
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=2da4366f9e2c44afedec4acad65a99a3c7da1a35
https://github.com/azure-rtos/threadx/
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— MMIO: Memory-Mapped Input Output
— SRAM: Static Random Access Memory (some kind of memory)
— UMAC: Upper Medium Access Controller
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