
Practical timing and SEMA on embedded

OpenSSL’s ECDSA

Julien Eynard1, Guenaël Renault1, Franck Rondepierre1, Adrian Thillard2

1 Harware Security Lab, ANSSI
2 Ledger Donjon

Abstract

Timing attacks are a class of side-channel attacks allowing an ad-
versary to recover some sensitive data by observing the execution time
of some underlying algorithm. Several cryptographic libraries have been
shown to be vulnerable against these attacks, oftentimes allowing practical
key recoveries. While recent papers showed that these threats are well-
known amongst developers, these libraries are often left unpatched, due to
the perceived burden of implementing efficient countermeasures. Instead,
many libraries chose to modify their threat model and to not consider
attacks where the adversary have local access to the target anymore.

In this paper, we show how to implement, on a real world device, a
recent timing attack described by Weiser et al. at Usenix20, targeting
OpenSSL’s ECDSA. We expand their discovery and demonstrate that
this attack applies to a bigger set of curves than claimed in the original
paper. After characterising the weakness against timing, we show that
the perceived safety that can be provided by a practical resistance against
those attacks can easily be shattered using slightly costlier attacks such as
Simple Electro-Magnetic Analysis. Our work hence highlight that secure
embedded purposes require a very careful choice of side-channel resistant
library.

1 Cryptographic libraries and timing attacks

Side-channel attacks exploit various physical leakages related to variables being
manipulated by a device. An attacker can leverage the observation of these
leakages to recover underlying secret values. These attacks have first been de-
scribed in the literature by Kocher [7], and have since be applied on dozens of
embedded targets. Several of these attacks have been illustrated at SSTIC on
eg. smart cards or smartphones [2, 10, 13].

Timing attacks, as described in 1996 by Paul Kocher in his seminal work
[7] allow to recover information about secret data by measuring the execution
time of the underlying algorithm. They have been shown to be particularly

1



powerful against various cryptographic libraries, and caused the publication of
many CVEs1

Recently, [5] conducted a survey on cryptographic libraries developers. The
survey showed that, even though most developers are aware of these kind of
attacks, the perceived cost of implementing efficient countermeasures against
them is too high. Instead, several libraries have decided to exclude “hardware”
side-channel attacks from their threat model. This is in particular the case of the
widely used library OpenSSL. While numerous side-channel attacks have been
published and exploited against this library, its threat model has for a while
excluded so-called “hardware” side-channel and it was updated in May 2019 to
exclude “same physical system side-channel” (eg. prime+probe attacks).

Before this change, from 2003 to 2018, 10 CVEs were published mentioning
timing attacks on OpenSSL. In this work, we want to stress that this library
still suffers from timing flaws that could be exploited. In particular, we want to
highlight the practical damage that can be induced by an attacker that is sup-
posed out of the scope of this model. At Usenix20, Weiser et al. [14] described a
class of side-channel vulnerabilities present in many ECDSA implementations.
OpenSSL decided not to fix their big number library, which was responsible for
this weaknesses.

In this section, we shortly describe the OpenSSL’s ECDSA vulnerability, and
how it can theoretically be exploited. Furthermore, we show that the results of
Weiser et al. can be extended to more curves than originally identified.

1.1 ECDSA

Elliptic Curve Digital Signature Scheme (ECDSA) is a signature scheme based
on the hardness of computing a discrete logarithm over elliptic curves. The
scheme requires a given curve E , a generator point G of order n, and a hash
function H. Besides, the signer generates a key pair (d, P ), where d < n is a
private key, and P = [d]G is the associated public key.

In order to sign a message m, the signer performs the following operations:

1. draw a random nonce k such that 0 < k < n

2. compute r = x([k]G), where x(·) returns the abscissa of a point

3. compute s = k−1(H(m) + rd) mod n

The signature is defined as the couple (r, s). It is well known that the nonce k
shall remain secret, the private key d can be trivially recovered since:

d = r−1(sk −H(m)) mod n

1For example, the first timing-related CVE on OpenSSL was CVE-2003-0078, and was
exploitable through Vaudenay’s padding oracle attack.

2



1.2 OpenSSL’s implementation

As suggested in appendix A.3.1 of the FIPS publication on Digital Signature
(FIPS 186-5) OpenSSL draws a random nonce k′ in the interval [0, 2log(n−1)+64]
and then compute k = k′ mod n. This modular reduction is computed through
a euclidean division.

Modular reduction BN mod, in a straightforward call to BN div (code link)

The following snippet illustrates a simplified version of the div function 2

1 div(BIGNUM *dv , BIGNUM *rm , const BIGNUM *num , const BIGNUM *

divisor , BN_CTX *ctx)

2 {

3 int ret;

4 [...]

5 ret = bn_div_fixed_top(dv, rm , num , divisor , ctx);

6

7 if (ret) {

8 if (dv != NULL)

9 bn_correct_top(dv);

10 if (rm != NULL)

11 bn_correct_top(rm);

12 }

13 return ret;

14 }

Note that line 11 calls bn correct top, which “corrects” the number of
words needed to store the remainder, that is, it gets rid of the zero most signif-
icants words. Consequently, at the end of step 1, the random nonce k is coded
on the exact number of words that it requires. It follows that any observation
of the number of words used to store k would reveal information on its length.

Furthermore, OpenSSL’s big number inversion is dependent to the manipu-
lated data. The inversion is computed as an exponentiation k−1 = kn−2 mod n,
since the order n is a prime value. The exponentiation is performed thanks to
Montgomery products denoted as ? : a ? b = a · b · R−1 mod n, with R = 2u

mod n for an appropriate integer u. The first operation consists in computing
k ? R2, where R2 mod n is a precomputed value with same length as n. This
multiplication involves the following snippet (code link). Part of its code is
reproduced hereafter 3:

1 int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM

*b, BN_MONT_CTX *mont , BN_CTX *ctx)

2 {

3 BIGNUM *tmp;

4 int ret = 0;

5 int num = mont ->N.top;

6

2It was pointed in a 2018 issue (https://github.com/openssl/openssl/issues/6367) that
BN div is not time-constant. However, it is unclear how this issue could be straightforwardly
exploited.

3Some parts of this code are conditioned to the set of compilation flags OPENSSL BN ASM MONT

and MONT WORD. These flags are very often present by default.

3

https://github.com/openssl/openssl/blob/master/crypto/bn/bn_div.c#L209
https://github.com/openssl/openssl/blob/master/crypto/bn/bn_mont.c#L37-L85
https://github.com/openssl/openssl/issues/6367


7 if (num > 1 && a->top == num && b->top == num) {

8 if (bn_wexpand(r, num) == NULL)

9 return 0;

10 if (bn_mul_mont(r->d, a->d, b->d, mont ->N.d, mont ->n0, num)

) {

11 r->neg = a->neg ^ b->neg;

12 r->top = num;

13 r->flags |= BN_FLG_FIXED_TOP;

14 return 1;

15 }

16 }

17 [...]

18 if (a == b) {

19 if (! bn_sqr_fixed_top(tmp , a, ctx))

20 goto err;

21 } else {

22 if (! bn_mul_fixed_top(tmp , a, b, ctx))

23 goto err;

24 }

25 /* reduce from aRR to aR */

26 if (! bn_from_montgomery_word(r, tmp , mont))

27 goto err;

28 ret = 1;

29 err:

30 BN_CTX_end(ctx);

31 return ret;

32 }

The execution flow of this function depends on its inputs: if the condition at
line 7 is satisfied, then the code between lines 8 to 15 will be executed (and the
rest will most likely not be), otherwise, the code between lines 18 to 31 will be
executed instead.

This part of the code will provide us the required observability of the bias.
Indeed, considering the inputs a = k and b = R2, the condition at line 7 simply
checks that the number of machine words used to store the curve order n is
strictly larger than one, and that the same number of words are used to store
a and b. Therefore, whenever k is stored on the same number of words as n,
the condition will be satisfied, and, whenever it is not, the condition will not
be satisfied. The amount of instructions and different functions in each part of
the code will lead to an observable behaviour by a side-channel attacker, hence
allowing him to recover this information about the size of k.

1.3 Hidden Number Problem and LLL

The Hidden Number Problem (HNP) is a mathematical problem introduced by
Boneh and Venkatesan [1]. In the ECDSA context, the problem asks for the
recovery of the secret key x from the knowledge of some information on the
nonces k. We provide the interested reader with an explanation of the HNP in
a python notebook in the supplementary material of this paper. This notebook
also proposes a hands-on resolution of a practical instance of this problem.

4



1.4 Finding vulnerable ECDSA curves

We showed in the previous section that an attacker is able to distinguish whether
the nonce k and the curve order n are stored on the same number of words. In
order to be exploitable, this observation needs to allow the recovery of different
nonce sizes a significant number of times. This simple observation implies that
not all curves are vulnerable against this attack in practice.

As a simple counter-example, let us consider the standard curve secp256k1.
The order n of this curve is 256

w -word long on any w-bit architecture. n is in fact
close to 2256−2128, and hence, on the vast majority of architectures, the binary
expression of its most significant word is fully composed of ones. The probability
for any uniformly generated nonce between 0 and n to require less than 256

w
words is then close to 2−w. Since a practical attack requires several dozens of
such nonces, the amount of total signatures to collect is prohibitive on most
architectures, eg. at least several dozens or hundreds of billions observations in
the case of a 32-bit architecture, and significantly worse on a 64-bit one.

On the contrary, let us consider the standard curve secp521r1, whose or-
der’s most significant 64 bits are 0x000001FF. Considering a 64-bit or a 32-bit
architecture, any uniformly generated nonce between 0 and this order has a
probability of 2−9 to have a null most significative word. This event is much
more likely to be observed, and the total number of required signatures to per-
form an attack can then be estimated around tens of thousands, which is much
more practical.

Using this method, Weiser et al. [14] found 32 standardized curves imple-
mented in OpenSSL that are vulnerable against this attack on 32-bit architec-
tures (3 of them stay vulnerable on 64-bit architectures). By slightly extending
their study, we are able to discover twelve more theoretically-vulnerable curves,
among which 3 of them are vulnerable in practice. Simply put, Weiser et al.
looked for curve orders implying a biased distribution of the nonces, producing
most of the time full-size nonces, and sometimes short nonces. We extend this
search and observe that some curve orders may imply a converse distribution,
ie., a production of short nonces most of the time, and full-size nonces some-
times. This is for example the case for the standardized curve c2pnb272w1,
which order’s 64 most significant bits are 0x000100FA: a nonce generated uni-
formly between 0 and this order has a probability close to 1− 2−8 to have null
32 most significant bits, and therefore only a 2−8 probability to require as many
words as the curve order on a 32-bit architecture.

The complete list of vulnerable curves can be found in the full version of this
paper.

2 Timing attack on some bits of the exponenti-
ated message

In their paper, Weiser et al.[14] claim that the identified vulnerability is ex-
ploitable with a SGX-enclave setup. We will demonstrate that this attack can

5



(a) Execution time (in CPU ticks) of
bn mul mont fixed top.

(b) Execution time (in CPU ticks) of
ec group do inverse ord

Figure 1: Means and variance of the execution time (in CPU ticks) of two
different functions depending on the size of their inputs. (10K samples per size)

in fact also be mounted in a practical embedded context. To this end, we embed-
ded the OpenSSL library (version 1.1.1k) on a Raspberry Pi 4 board. Our first
goal is to show that the difference of execution path between the two possible
branches actually translates into an observable timing difference.

We choose to illustrate this difference at the lower level, by measuring the
execution time of the function bn mul mont fixed top. We start by setting our-
selves in an ideal setup, and measure the ticks between the start and end of this
function, for different input sizes around 256 bits. The results of this experiment
can be seen in Figure 1 (a). One can clearly observe a huge timing difference on
this function, which validates the presence of the detected bias. This difference
can be used by an attacker to detect with a near-perfect confidence the word-
length of the input. In order to confirm that this bias can be exploited when
timing this function, we drew 225 random nonces smaller than the order, and
ran the function. We observed (see Fig. 2 (a)) that the fastest ∼ 217 executions
were associated with a maximal nonce size. It is by far sufficient to mount and
succeed the attack.

We exhibit in Figure 1 (b) the same experiment on the higher level function
ec group do inverse ord. This time, no timing difference can be observed
by the attacker. This is easily explained by the noise induced by a longer
execution time, and the possibility of other timing biases occuring during the
process. Once again we ran 225 executions with random nonces. As it can be
seen on Figure 2 (b), it is not possible to select the maximal nonce size based
on the execution time. This negative result may lead a designer under the false
impression that the bias is too hard to exploit in practice, and hence that the
vulnerability is residual. We will show in the next session that the bias is in
fact still observable by a slightly stronger adversary, and we demonstrate how
to recover the secret key of the whole ECDSA signature.

6



(a) Zoom on 200,000 fastest executions of
bn mul mont fixed top

(b) Zoom on 100 fastest
executions of

ec group do inverse ord

Figure 2: Nonce size (y-axis) for the fastest of 225 execution times of (a)
bn mul mont fixed top, (b) ec group do inverse ord.

3 Practical SEMA attack on ECDSA

Figure 3: SEMA Acquisition bench.

In this section, we fill the gap from
theory to practice, by performing a
practical, end-to-end implementation
of this attack. We now consider
the highest possible function call,
and setup a practical attack on the
whole ECDSA. To do so, we target
our Raspberry Pi setup and call the
ECDSA signature through the com-
mand line. We choose to perform our
experiments using secp521r1 for il-
lustration purposes, since this is the
curve relying on operations on the
biggest numbers.

We now leverage our physical
access to the device by observing
its electro-magnetic emanations while
performing the signatures. This approach is commonly known as Simple Electro-
Magnetic Analysis (SEMA), and relies on the electronical hypothesis that differ-
ent manipulated data and operations will induce different EM behaviour. This
side-channel has been often used in practice to break cryptographic implemen-
tations (eg. [11]).

To this end, we use an EM observation probe Langer RF-U 2,5-2 in order to
measure the signal, as well as a Lecroy scope capturing 1G samples by second.
Figure 3 illustrates our setup bench. We then record the electromagnetic ema-
nations of the device during the execution of the ECDSA signature, for different
nonces. The knowledge of the secret key allows us to recover these nonces and
separate the curves.

7



Figure 4: Electromagnetic emanations of the Raspberry Pi during the execution
of the ECDSA signature on secp521r1, for different nonces lengths. Top: 17-
word long nonce, bottom: 16-word long nonce. An easily observable difference
can be identified by an adversary.

This experiment clearly exhibits an important difference between the be-
haviour of long and short nonces, as can be seen in Figure 4. Indeed, while
the first half of the window is similar in the two contexts, a divergence occurs
starting near time sample 250000, revealing the underlying different paths taken
by the executed code.

We indeed tested this approach on an attacker scenario, with a supposed
unknown key. To this end, we collected 51200 traces, which we automatically
processed to find 104 of them containing the distinguishing pattern. By running
an LLL approach on the 104 corresponding signatures, we were able to solve
the hidden number problem and recover the private key.

4 Conclusion

We showed how an identified timing flaw can translate into a practical attack
in an embedded setting. We extended the results of Weiser et al. by discovering
several more vulnerable curves in OpenSSL and validated the observability of
the bias in timing at the lower level. Finally, we used SEMA to actually perform
an end to end exploitation of the vulnerability. While we stress that OpenSSL is
now considering these attacks as out of scope, - despite developers being most of
the time aware of the threats of timing attacks-, we firmly believe that our work
strongly highlights the potential drawbacks of this decision, and warns users of
cryptographic libraries to carefully take into account these vulnerabilities.

8



References

[1] Dan Boneh and Ramarathnam Venkatesan. Hardness of computing the
most significant bits of secret keys in diffie-hellman and related schemes. In
Neal Koblitz, editor, Advances in Cryptology - CRYPTO ’96, 16th Annual
International Cryptology Conference, Santa Barbara, California, USA, Au-
gust 18-22, 1996, Proceedings, volume 1109 of Lecture Notes in Computer
Science, pages 129–142. Springer, 1996.

[2] Christophe Devine, Manuel San Pedro, and Adrian Thillard. A practical
guide to differential power analysis of usim cards. SSTIC, 2018.

[3] Jean-Charles Faugère, Christopher Goyet, and Guénaël Renault. Attacking
(EC)DSA given only an implicit hint. In Lars R. Knudsen and Huapeng
Wu, editors, Selected Areas in Cryptography, 19th International Confer-
ence, SAC 2012, Windsor, ON, Canada, August 15-16, 2012, Revised Se-
lected Papers, volume 7707 of Lecture Notes in Computer Science, pages
252–274. Springer, 2012.

[4] Martin Hlavác and Tomás Rosa. Extended hidden number problem and
its cryptanalytic applications. In Eli Biham and Amr M. Youssef, editors,
Selected Areas in Cryptography, 13th International Workshop, SAC 2006,
Montreal, Canada, August 17-18, 2006 Revised Selected Papers, volume
4356 of Lecture Notes in Computer Science, pages 114–133. Springer, 2006.

[5] Jan Jancar, Marcel Fourné, Daniel De Almeida Braga, Mohamed Sabt,
Peter Schwabe, Gilles Barthe, Pierre-Alain Fouque, and Yasemin Acar. ¨
They are not that hard to mitigate¨ : What cryptographic library devel-
opers think about timing attacks. IACR Cryptol. ePrint Arch., page 1650,
2021.

[6] Jan Jancar, Vladimir Sedlacek, Petr Svenda, and Marek Sýs. Minerva:
The curse of ECDSA nonces systematic analysis of lattice attacks on noisy
leakage of bit-length of ECDSA nonces. IACR Trans. Cryptogr. Hardw.
Embed. Syst., 2020(4):281–308, 2020.

[7] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109
of Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[8] A. K. Lenstra, H. W. Lenstra, and L. Lovasz. Factoring polynomials with
rational coefficients. MATH. ANN, 261:515–534, 1982.

[9] Phong Q. Nguyen and Igor E. Shparlinski. The insecurity of the digital
signature algorithm with partially known nonces. J. Cryptol., 15(3):151–
176, 2002.

9



[10] Manuel San Pedro, Victor Servant, and Charles Guillemet. Side-channel
assessment of open source hardware wallets. Cryptology ePrint Archive,
Report 2019/401, 2019. https://ia.cr/2019/401.

[11] Thomas Roche, Victor Lomné, Camille Mutschler, and Laurent Imbert. A
side journey to titan. In Michael Bailey and Rachel Greenstadt, editors,
30th USENIX Security Symposium, USENIX Security 2021, August 11-13,
2021, pages 231–248. USENIX Association, 2021.

[12] Keegan Ryan. Return of the hidden number problem. A widespread and
novel key extraction attack on ECDSA and DSA. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2019(1):146–168, 2019.

[13] Aurélien Vasselle. Side-channel attack on mobile firmware encryption.
SSTIC, 2019.

[14] Samuel Weiser, David Schrammel, Lukas Bodner, and Raphael Spreitzer.
Big numbers - big troubles: Systematically analyzing nonce leakage in
(EC)DSA implementations. In Srdjan Capkun and Franziska Roesner, ed-
itors, 29th USENIX Security Symposium, USENIX Security 2020, August
12-14, 2020, pages 1767–1784. USENIX Association, 2020.

10

https://ia.cr/2019/401

	Cryptographic libraries and timing attacks
	ECDSA
	OpenSSL's implementation
	Hidden Number Problem and LLL
	Finding vulnerable ECDSA curves

	Timing attack on some bits of the exponentiated message
	Practical SEMA attack on ECDSA
	Conclusion

