L

¢

LEDGER

Practical tlmlng'and SEMA on
embedded OpenSSL's ECDSA

Julien Eynard, Guénaél Renault, Franck Rondepierre, Adrian Thillard

-

Security of crypto libs against practical attacks

Crypto is
- onyour PC
- onh your phone
- on your smart cards
- on your embedded devices

/4

Practical timing and SEMA on embedded OpenSSL’'s ECDSA

1-15

-

Security of crypto libs against practical attacks

Crypto IS
on your PC
- onh your phone
- on your smart cards
- on your embedded devices

Attackers are : s
- timing attacks
- cache attacks
- SCA attacks

/4
()

Practical timing and SEMA on embedded OpenSSL's ECDSA

1-15

-

Timing attacks: Minerva / TPM.falil

Practical timing and SEMA on embedded OpenSSL's ECDSA

2-15

-
L
L

Timing attacks: Minerva / TPM.falil

key

2-15 Practical timing and SEMA on embedded OpenSSL's ECDSA

-
|

Practical timing and SEMA on embedded OpenSSL's ECDSA

2-15

Timing attacks: Minerva / TPM.falil
key

Y

for i in bits(K):
msg — do stuff;
\\ do other stuff;

=
%
__/

-
|

Practical timing and SEMA on embedded OpenSSL's ECDSA

2-15

Timing attacks: Minerva / TPM.falil

key
* k € [1,n-1]

for i in bits(K):

msg — do stuff; - Slg

\\ do other stuff; /
N

r‘ on the bit length _u
¥4 of k

Several sig with info on k allows to recover key (LLL)
(more info in notebook!)

-

Practical timing and SEMA on embedded OpenSSL's ECDSA

3-15

OpenSSL Threat Model

Threat Model

Certain threats are currently considered outside of the scope of the OpenSSL threat model.
Accordingly, we do not consider OpenSSL secure against the following classes of attacks:

e same physical system side channel

e CPU/hardware flaws

e physical fault injection

e physical observation side channels (e.g. power consumption, EM emissions, etc)

Mitigations for security issues outside of our threat scope may still be addressed, however we do
not class these as OpenSSL vulnerabilities and will therefore not issue CVEs for any mitigations to
address these issues.

We are working towards making the same physical system side channel attacks very hard.

Prior to the threat model being included in this policy, CVEs were sometimes issued for these
classes of attacks. The existence of a previous CVE does not override this policy going forward.

Practical timing and SEMA on embedded OpenSSL's ECDSA

OpenSSL Threat Model

Threat Model

Certain threats are currently considered outside of the scope of the OpenSSL threat model.
Accordingly, we do not consider OpenSSL secure against the following classes of attacks:

same physical system side channel

CPU/hardware flaws

physical fault injection

physical observation side channels (e.g. power consumption, EM emissions, etc)

Mitigations for security issues outside of our threat scope may still be addressed, however we do
not class these as OpenSSL vulnerabilities and will therefore not issue CVEs for any mitigations to
address these issues.

e are working towards making the same physical system side channel attacks very hard.

Prior to the threat model being included in this policy, CVEs were sometimes issued for these
classes of attacks. The existence of a previous CVE does not override this policy going forward.

So, what security does OpenSSL provide in an
embedded setting?

-

Safe or not safe? A look at ECDSA

int ossl_ec_scalar_mul_ladder(const EC_GROUP xgroup, EC_POINT xr,
const BIGNUM xscalar, const EC_POINT *point,
BN_CTX *ctx)

Practical timing and SEMA on embedded OpenSSL's ECDSA

4-15

-

Safe or not safe? A look at ECDSA

int ossl_ec_scalar_mul_ladder(const EC_GROUP xgroup, EC_POINT xr,
const BIGNUM xscalar, const EC_POINT *point,

BN_CTX *ctx)

Classic math trick:
e [1, 2% n-1]

= loops are longer, but the length of
k = k" mod n is hidden

https://nvipubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5-draft.pdf

A.3.1 Per-Message Secret Number Generation Using Extra Random Bits
This method uses a cryptographically strong RBG to produce a random bit strmg that is at least

bits are requested from the RBG than are needed for & so that statistical bias introduced by the

modular reduction steplis negligible]

Practical timing and SEMA on embedded OpenSSL's ECDSA

4-15

-

Practical timing and SEMA on embedded OpenSSL's ECDSA

5-15

Another flaw?

for i in bits(K):

for i in bits(K’):
do stuff; /

Require operations on k

-

Practical timing and SEMA on embedded OpenSSL's ECDSA

6-15

Another flaw

int bn_mul_mont_fixed_top (BIGNUM *r,

const BIGNUM x*a,

*b, BN_MONT_CTX *mont, BN_CTX *ctx)

{
BIGNUM *tmp;
int ret = 0;
int num = mont->N.top;

if (num > 1 && a->top == num && b->top == num) {
if (bn_wexpand(r, num) == NULL)

return O;

if (bn_mul_mont(r->d, a->d, b->d, mont->N.d,

) {

r->neg a->neg
r->top = num;

b->neg;

r->flags |= BN_FLG_FIXED_TOP;

return 1;
}
}
[yl
if (a == b) {
if (!'bn_sqr_fixed_top(tmp, a,
goto err;
{
('bn_mul_fixed_top(tmp, a,
goto err;

/* reduce from aRR to aR */

ctx))

b, ctx))

if (!bn_from_montgomery_word(r, tmp, mont))

goto err;
ret = 1;

BN_CTX_end (ctx) ;
return ret;

const BIGNUM

mont ->n0, num)

k € [1,n-1]

if (nb_words(n) == nb_words(K)):

-

Another flaw

1 int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM
*b, BN_MONT_CTX *mont, BN_CTX *ctx)
2 {

BIGNUM *tmp;
int ret (03
int num mont ->N. top;

if (num > 1 && a->top == num && b->top == num) {
if (bn_wexpand(r, num) == NULL)
return O;
if (bn_mul_mont(r->d, a->d, b->d, mont->N.d, mont->n0, num)

r->neg = a->neg -~ b->neg;
r->top = num;
r->flags |= BN_FLG_FIXED_TOP;
return 1;
}
}
[yl
if (a == b) {
if (!bn_sqr_fixed_top(tmp, a, ctx))
goto err;
} else {
if (!bn_mul_fixed_top(tmp, a, b, ctx))
goto err;
Iy
/* reduce from aRR to aR */
if (!bn_from_montgomery_word(r, tmp, mont))
goto err;
ret = 1;
erT
BN_CTX_end(ctx);
return ret;

Practical timing and SEMA on embedded OpenSSL's ECDSA

6-15

k € [1,n-1]

if (nb_words(n) == nb_words(K)):

OpenSSL encodes a bignum on the
lowest necessary number of words

00000000{AB321623|A8299873(37281902

3 words

Practical timing and SEMA on embedded OpenSSL's ECDSA

6-15

Another flaw

1 int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM
*b, BN_MONT_CTX *mont, BN_CTX *ctx)

2 {
i ol FFFFFFFF |FFFFFFFF |62178293 |A721B267
int num mont ->N. top;

if (num > 1 && a->top == num && b->top == num) {

11 zzgggggfgj{:::;-i‘:f}ajidliw:liid, mont->N.d, mont->n0, num) k A928F516 22354820 ABZC6231 1A736227

r->neg = a->neg -~ b->neg;
r->top = num;

r->flags |= BN_FLG_FIXED_TOP;
return 1;

}
}
0o 4]
if (a == b) {

e bn_mul_mont is a fast,

Y elsd {

S et) ASM optimized function

/* 2educe from aRR/to aR */
if’ ('bu_frorm_montgomery_woxrd(r,
goto efr;
ret /= 1;
érr:
BN_CTY_endflctx),
retufn rex;

Practical timing and SEMA on embedded OpenSSL's ECDSA

6-15

Another flaw

1 int bn_mul_mont_fixed_top(BIGNUM *r, const BIGNUM *a, const BIGNUM
*b, BN_MONT_CTX *mont, BN_CTX *ctx)

2 {
g gl FFFFFFFF [FFFFFFFF |62178293 |A721B267
int num mont ->N.top;
‘ if (num > 1 iz& a->top == nu!=n=&i& b->top == num) { x
if (;ji:iiiz;rc(z"->d, a->d‘, D—;d, mont~>N.4, morc->n0, num) k OOOOOOOO 22354820 ABZC6231 1A736227

r->neg /= a->neg / b->neg;
r->top = num;

r->flags /= BW_FLG_FIXED_TOF;
refurn 4;

¥

[C5 00l
if (a == b) {

(tba_sqr_fised_top(tap. oo 550) bn_mul_fixed_top is a

{

el e slow, high-level function

/* reduce from aRR to aR */
if (!bn_from_montgomery_word(r, tmp, mont))
goto err;
ret = 1;
err:
BN_CTX_end(ctx);
return ret;

-

Timing attack: how to exploit?

1) Choose a clever n that can easily trigger the issue

Al 00000001 |FFFFFFFF |62178293 |A721B267

Practical timing and SEMA on embedded OpenSSL's ECDSA

7-15

-

Timing attack: how to exploit?

1) Choose a clever n that can easily trigger the issue

Al 00000001 |FFFFFFFF |62178293 |A721B267

'@ 00000001 | 15151515 | 15151515 |15151515 @ 00000000 15151515 | 15151515 | 15151515

Practical timing and SEMA on embedded OpenSSL's ECDSA

7-15

-

Timing attack: how to exploit?

1) Choose a clever n that can easily trigger the issue

Al 00000001 |FFFFFFFF |62178293 |A721B267

2) Measure the execution times of several signatures

fastest slowest

'@ 00000001 | 15151515 | 15151515 |15151515 @ 00000000 15151515 | 15151515 | 15151515

Practical timing and SEMA on embedded OpenSSL's ECDSA

7-15

-

Timing attack: how to exploit?

1) Choose a clever n that can easily trigger the issue

Al 00000001 |FFFFFFFF |62178293 |A721B267

2) Measure the execution times of several signatures

fastest slowest

'@ 00000001 | 15151515 | 15151515 |15151515 @ 00000000 15151515 | 15151515 | 15151515

3) Recover the key from several nonces length (LLL)
(See notebook!)

Practical timing and SEMA on embedded OpenSSL's ECDSA

7-15

-

Practical timing and SEMA on embedded OpenSSL's ECDSA

8-15

Vulnerable curves

Parameter n comes from an elliptic curve

OpenSSL allows the usage of many standard curves

name
secpo21rl
sect131rl
sect131r2
sect163k1
sect163rl
sect163r2
sect233k1
sect233rl
sect409k1

shol ter

shorter
shorter
shorter
shorter
shorter
shorter
shorter
shorter

- o

9-
2
2
2
9-
9
9-
9-

b

=1 NN

(‘2])111)70<\V\ 1
c2pnb272wl
c2pnb304wl
c2pnb368wl
c2tnb431rl
wap-wsg-id-ecid-wtls1
wap-wsg-idm-ecid-wtls3
wap-wsg-idm-ecid-wtlsh
wap-wsg-idm-ecid-wtls10
wap-wsg-idm-ecid-wtls11

lonﬁo
longer
longer
longer

shorter
shorter
shorter
shorter
shorter
shorter

(S

BN NN N NN

-

Timing attack: practical setup

- OpenSSL 1.1.1k on a Raspberry Pi 4
- counting clock cycles using rdtsc
- choose a custom n of 257 bits

Practical timing and SEMA on embedded OpenSSL's ECDSA

9-15

-

Timing attack: practical setup

- OpenSSL 1.1.1k on a Raspberry Pi 4
- counting clock cycles using rdtsc
- choose a custom n of 257 bits

Practical timing and SEMA on embedded OpenSSL's ECDSA

(a) Execution time (in CPU ticks) of
bn_mul mont_fixed_top.

9-15

-

Timing attack: practical setup

- OpenSSL 1.1.1k on a Raspberry Pi 4
- counting clock cycles using rdtsc
- choose a custom n of 257 bits

Practical timing and SEMA on embedded OpenSSL's ECDSA

(a) Execution time (in CPU ticks) of (b) Execution time (in CPU ticks) of
bn_mul mont_fixed _top. ec_group_do_inverse_ord

9-15

-
|

Timing results

- If the attacker is able to clearly point out the
beginning and the end of
bn_mul_mont_fixed_top

- In a SGX-enclave / cache attack setup

embedded OpenSSL’'s ECDSA

Very hard:
- The sensitive operation is too quick compared
to the rest of the code = big noise

Practical timing and SEMA on

10-15

[|
| |

Practical timing and SEMA on embedded OpenSSL's ECDSA

11-15

SEMA setup

- Measure the EM signal from
the Raspberry during the
computation

- EM probe
- Scope sampling 1GS/s

- Launch signature from the
openssl command line

—

“ SEMA results

17-word gcalar

100000 200000 400000 500000

" 300000
iffarence

Practical timing and SEMA on embedded OpenSSL's ECDSA

100000 200000 400000

12-15

-

“ SEMA results

- Easy to detect the pattern, on the fly or offline
- Allows certain recovery of the nonce length

- Allows key recovery in practical time (LLL)
(See notebook!)

Practical timing and SEMA on embedded OpenSSL's ECDSA

13-15

-

“* How to fix this?

- The simplest way is to force the nonce to always be
coded on the maximum number of words

- This implies many modifications in the bignum library

- This change was made eg. in BoringSSL

Practical timing and SEMA on embedded OpenSSL's ECDSA

14-15

-

LELCENTENES

- If remote timings are not possible, a stronger attacker
might find another way

- Please be extra-careful of your end usecase and the
threat models when picking your lib

Practical timing and SEMA on embedded OpenSSL's ECDSA

15-15

