
Analyse statique de code avec Semgrep
SSTIC 2023

Claudio Merloni (claudio@semgrep.com)
https://bit.ly/semgrep_sstic2023

mailto:claudio@semgrep.com
https://bit.ly/semgrep_sstic2023

Agenda

1. Introduction to Semgrep OSS
a. Philosophy
b. Architecture and features
c. Getting started
d. Alternatives

2. Finding vulnerabilities
3. Enforcing secure defaults
4. Exploring a code base
5. References

About me

Claudio Merloni
Security Research Manager @ Semgrep
claudio@semgrep.com
 claudiomerloni

Proudly stuck in static analysis since 2008
Formerly: Synopsys, Fortify

mailto:claudio@semgrep.com
https://www.linkedin.com/in/claudiomerloni/

Semgrep OSS

Philosophy

TL;DR

● Free & OSS
● Local & self-contained
● Runs everywhere, analyses everything
● User-friendly: get started using it and writing rules in minutes

https://semgrep.dev/docs/contributing/semgrep-philosophy/

https://semgrep.dev/docs/contributing/semgrep-philosophy/

Analysis architecture

Code CST AST/IL Analysis

tree-sitter parsers

Supported Languages

Search mode:
● Semantic-aware AST pattern matching
● Single file analysis
● Intraprocedural symbolic constant

propagation
● Understanding of types and external

symbols
● Autofix

Taint mode:
● Extension of search mode
● Intraprocedural taint propagation
● Extends syntax with support for

sources, sinks, sanitizers and
propagators

● Taint labels and composition
Extract mode:

● Extract and analyse code embedded in
a different language

Join mode:
● Multi file analysis
● Join results based on metavariables

and file paths

Rules

YAML patterns and
metadata

● Writing rules
● Rules repository
● Semgrep

Playground
● Semgrep Registry

https://tree-sitter.github.io/tree-sitter/
https://semgrep.dev/docs/supported-languages/
https://semgrep.dev/docs/writing-rules/overview/
https://semgrep.dev/docs/writing-rules/data-flow/data-flow-overview/
https://semgrep.dev/docs/writing-rules/experiments/taint-labels/
https://semgrep.dev/docs/writing-rules/experiments/extract-mode/
https://semgrep.dev/docs/writing-rules/experiments/join-mode/overview/
https://semgrep.dev/docs/writing-rules/overview/
https://github.com/returntocorp/semgrep-rules
https://semgrep.dev/playground
https://semgrep.dev/playground
https://semgrep.dev/explore

Getting started

● Prerequisites: Python, WSL on Windows
● Installation

○ brew install semgrep
○ pip install semgrep (or pipx install semgrep)

● Usage
○ semgrep --config=<rules> <my target folder>

● Alternatively
○ docker run --rm -v "${PWD}:/src" returntocorp/semgrep semgrep --config=<rules>

● Can be used in CLI, pre-commit, CI workflows, etc.
● See https://semgrep.dev/docs/getting-started/

https://semgrep.dev/docs/getting-started/

Alternatives

● CodeQL
○ Engine is not OSS
○ Open to contributions to queries and libraries
○ Free to use only on public GitHub repositories
○ Supports C, C++, C#, Go, Java, Kotlin, JS/TS, Python, Ruby
○ Requires full “buildable” code base
○ Query syntax has rather high learning curve

● Weggli
○ Written in Rust, doesn’t depend on something like a Python installation
○ Parsing based on tree-sitter
○ Focused on C and C++
○ Doesn’t require buildable code base
○ Patterns are very close to C/C++ code
○ Stay here to hear more about it from Kevin Denis!

● … and many others! Gosec, Brakeman, Bandit, Gitleaks, …

https://github.com/github/codeql/blob/main/CONTRIBUTING.md
https://codeql.github.com/docs/codeql-overview/supported-languages-and-frameworks/
https://www.sstic.org/2023/presentation/analyseautomatique/

Finding vulnerabilities

Audit for SSRF

Try it out: https://semgrep.dev/s/J4jw
Similar vulnerability, different audit technique: https://blog.doyensec.com/2023/03/16/ssrf-remediation-bypass.html

https://semgrep.dev/s/J4jw
https://blog.doyensec.com/2023/03/16/ssrf-remediation-bypass.html

Hunting for SQLi

Try it out: https://semgrep.dev/playground/s/2oyj

https://semgrep.dev/playground/s/2oyj

Hunting for hardcoded secrets

Try it out: https://semgrep.dev/s/vypW

https://semgrep.dev/s/vypW

Enforcing secure defaults

Stop leaking sensitive data

Try it out: https://semgrep.dev/s/0klB

https://semgrep.dev/s/0klB

And code conventions in general!

Example: https://www.fabianzeindl.com/posts/business-information-server

● Validate format of structured data files (JSON, YAML, etc.)
○ We use it for our own Semgrep rules!

● Enforcing naming conventions (classes, API endpoints, etc.)

● Usage of forbidden/unsafe libraries and APIs

https://www.fabianzeindl.com/posts/business-information-server

Exploring a code base

Discovering web application routes

Discovering web application routes

Try it out: https://semgrep.dev/s/WdqL

https://semgrep.dev/s/WdqL

References

References

● Semgrep source code: https://github.com/returntocorp/semgrep
● Registry: https://semgrep.dev/explore

○ Community rules repository: https://github.com/returntocorp/semgrep-rules
● Rule writing tutorial: https://semgrep.dev/learn
● Docs: https://semgrep.dev/docs/
● Community Slack: https://r2c.dev/slack

● https://blog.trailofbits.com/2021/11/08/discovering-goroutine-leaks-with-semgrep/
● https://blog.includesecurity.com/2021/07/customizing-semgrep-rules-for-flask-django/
● https://notsosecure.com/semgrep-practical-introduction
● https://blog.aquia.io/blog/2022-02-18-semgrep-cdk/
● https://blog.doyensec.com/2023/03/16/ssrf-remediation-bypass.html
● https://www.fabianzeindl.com/posts/business-information-server

https://github.com/returntocorp/semgrep
https://semgrep.dev/explore
https://github.com/returntocorp/semgrep-rules
https://semgrep.dev/learn
https://semgrep.dev/docs/
https://r2c.dev/slack
https://blog.trailofbits.com/2021/11/08/discovering-goroutine-leaks-with-semgrep/
https://blog.includesecurity.com/2021/07/customizing-semgrep-rules-for-flask-django/
https://notsosecure.com/semgrep-practical-introduction
https://blog.aquia.io/blog/2022-02-18-semgrep-cdk/
https://blog.doyensec.com/2023/03/16/ssrf-remediation-bypass.html
https://www.fabianzeindl.com/posts/business-information-server

Merci!

More examples

SQL Injection with taint labels - The code

Try it out: https://semgrep.dev/s/klD1

Focus on a specific library

We know where user data comes from

The usual suspect …

https://semgrep.dev/s/klD1

SQL Injection with taint labels - Database library

SQL Injection with taint labels - User input

SQL Injection with taint labels - Putting it together

Focus on a block of code and
capture the database connection

Call on a method of the captured
variable

The query is our sink …

… only if source constraints are met!

Forgotten debugging code

Try it out: https://semgrep.dev/r/python.lang.correctness.pdb.pdb-remove

https://semgrep.dev/r/python.lang.correctness.pdb.pdb-remove

