Exploring OpenSSL Engines to Smash Cryptography

Dahmun Goudarzi and Guillaume Valadon

SSTIC 2023 Quarkslab

Motivations

SSTIC 2023 Quarkslab

NIST Post-Quantum Competition (2015-2023): new cryptographic libraries to be deployed.

Cryptographic migration always long and cumbersome.

+ Migration needs to be hybrid: classical and post-quantum working together: need for agility.

+ How to modify OpenSSL to support PQC and hybrid schemes proficiently ?

- Patches:

base repository: openssl/openss| ¥ base: OpenSSL_1_1_1-stable ™

direct modifications of the source codes

head repository: compare:

+ numerous files to modify

* prone to mistake induction and security flaws

-0- Commits 385

painful to dispatch

+ Engines:

* no modification of OpenSSL code oy
. . Bourne Shell
- follow a strict API to define new schemes Clceitincs
CMake
Text

+ easy to dispatch and deploy: just a .so e (s e

Same project adding several signatures schemes
into OpenSSL with both approaches

* Numerous engines exist

« With OpenSSL 3.0, providers are
introduced which brings even
more agility.

ogs-engine is a C-based that enables the use of post-quantum digital signature algorithms.

Our new ENGINE, engNTRU, builds upon 1ibbecc [15], which
is itself derived from 1ibsuola. Both previous works applied

software-based acceleration has been incorporated into the
Intel QAT Engine for OpenSSLY, a dynamically loadable module
that uses the OpenSSL ENGINE framework, allowing
administrators to add this capability to OpenSSL without having
to rebuild or replace their existing OpenSSL libraries.

+ APl allows to replace most functions in libcrypto

* How stealthy can a malicious engine be?

Focus of this talk:

What if we replace standard, well studied cryptographic
implementations by flawed ones

OpenSSL and Engines

SSTIC 2023 Quarkslab

+ Applications: set of CLI calling libssl and
libcrypto

* libssl (composed of TLS Protocols): implements
the TLS and DTLS protocols.

* libcrypto (composed of Common Services,
other Protocols, and {Legacy, Core, Default} Pro
viders): implementations of numerous cryptogra
phic objects and primitives.

+ Engines: extend the functionality of libcrypto via the
Engine API.

Applications

ca ciphers cms dgst dhparam dsa dsaparam ec
enc engine errstr gendsa genpkey genrsa kdf
Common Protocols Legacy APIs
Services TLS Protocols Other Protocols
AES RSA DH
TLS DTLS statem record CMS OCSP
X509
ENGINE
SSL BIO Trace TS
CT
EVP
Core
STORE
v v v v v v
Default Null Base FIPS Legacy 3rd Party
ASN.1 Provider Provider Provider | Provider Provider Provider
FIPS
BIO Algorithms s
Algorithms
CMS RSA
MODES CMS RSA EC moz2 | lrca
ERR EC .. e oapport
POST
Low Level Impl

STATIC VS DYNAMIC USE

#include <openssl/conf.h>
#include <openssl/evp.h>
#include <openssl/err.h>

int main(int arc, char xargv[])

{

ERR_load_crypto_strings();
OpenSSL_add_all_algorithms();

OPENSSL_config(NULL) ;
byte buffer[128];

int rc = RAND_bytes(buffer, sizeof(buffer));
unsigned long err = ERR_get_error();

if(rc !1=1) {

EVP_cleanup();

CRYPTO_cleanup_all_ex_datal();

ERR_free_strings();

return 0;

~> rand -hex 128
3cbcae274fcfbc73ff77291702671c1d0@d5dbbleb6c479773fb3f35b8d2a750611bbaf02ed3490d290e8e8dlaa8bcef39e34
6612279b98c68f450a12b69ces48cb@d4722d7a359eabe3F2c43e73195¢28392604717489af720464bdb340bdc7b233cd9cfbo
4belaf45bbe5399ab2646a4f3ca8110558af91427ee9381151713fF

OpenSSL example configuration file.
See doc/man5/config.pod for more info.

This is mostly being used for generation of certificate requests,
but may be used for auto loading of providers

#
#
#
#
#
#

Note that you can include other files from the main configuration
file using the .include directive.
#.include filename

This definition stops the following lines choking if HOME isn't
defined.
HOME

Use this in order to automatically load providers.
openssl_conf = openssl_init

* Introduced in OpenSSL 0.9.6 to bind low-level custom implementations of cryptographic algorithms

+ Mostly used to enable hardware accelerators to replace the software counterpart

+ Good paper to implement your own engine:

Start your engines: Dynamically loadable contemporary crypto. 2019 IEEE Cybersecurity Development
by Nicola Tuveri and Billy Bob Bromley

10

custom crypto library

superhash_init() <

superhash_update()

superhash_final() <

custom engine

Dyn
links 32 - myengine_bind()
28D .
38 ¢ register (EVP_MD)
S 5 § md_identity()
g2 X
|: 2
g
(EVP_MD) md_identity
« init()
ﬁ ¢ update()
o final()
delegates to

Dyn

loads

OpenSSL

11

STATIC VS DYNAMIC USE

.o .. /OpEeNnssl _Qlr
Engine "ossltest" set.

1" #$%8 ' ()*+,—./0123456789:;<=>70

r *ENGINE_NAME = "your_engine";

engine_load();
ENGINE xe = ENGINE_by_id(ENGINE_NAME);
ENGINE_init(e);

[openssl_def]

engines = engine_section
ENGINE_set_default(e, ENGINE_METHOD_ALL) ;
[engine_section]
ENGINE_free(e); your_engine = your_engine_section

[your_engine_section]

engine_id = your_engine_name

dynamic_path = PATH/TO/ENGINE/your_engine.{so,dl1l,dylib}
default_algorithms = ALL

init = 1

12

Example on a PKIX

SSTIC 2023 Quarkslab

CHANGING SHA-512

+ Built-in countermeasure against RNG failures.

(md, 42, len);

ZVP_MD_CTX *ctx)

EVP_MD_meth_get_init(EVP_sha512()) (ctx);

EVP_MD_CTX *ctx, void xdata,
count)

BN_generate_dsa_nonce(BIGNUM xout, BIGNUM xrange,
BIGNUM *priv, Insi
message_len, BN_CTX *ctx)

xmessage, return EVP_MD_meth_get_update(EVP_sha512()) (ctx, data, count);

EVP_MD_CTX *ctx, unsigr I *md)

t = EVP_MD_meth_get_final(EVP_sha512()) (ctx, md);
md = EVP_MD_fetch(libctx, "SHA512", | re e mei b

(ret > 0) {
md, SHA512_DIGEST_LENGTH);

MALICIOUS ENGINE FOR A CERTIFICATE AUTHORITY

- Simulating a Certificate Authority with the constant SHA-512 engine

« Make the certificate issue at least 2 certificates with the engine (NB: even without the engine, those
certificates will pass verification)

« Extract the signature and to-be-signed from the certificate (simple CLIs)

« Recovering the secret key

15

ECDSA signature algorithm

..and resulting nonce and key recovery from duplicated nonce

h = H(m) secret / public
e = 0S2I(h) mod q

k< R, ke€]o,q|

W= (W,W)=kxG

r = Wx mod q

s = k™1 x (xr + e)mod q

Return (r,s)

NoghwbdHE

From 6: above, we draw for two signatures (r,s;) and (r, s,) sharing the same
duplicated nonce k for different messages:

Nonce recovery from nonce duplication key recovery from nonce
si—ss =k 'x(xr+e)—kIx(xr+e)modq|x=(kxs —e)xn!modgq
k=1 x (xr+ ey — xr — &) mod q (kx s —e) x n~! mod q
k=1 x (e; — &) mod q

— k= (e1 — &) x (51 —) "'mod q

SAGE SCRIPT FOR RECOVERY

Oxffffffffoeeeeeeeffffffffffffffffbce6faada7179e84f3b9%cac2fc632551
= GF(n)
2 certificates
K(0x7e736e77359dc96303c345dea6890cT2102fe338c8a%9062edb301641a6699%¢e2f)
= K(@xeabcb44d2335d6a%9a36095b741379edddadbfc2c94e6a0fed2b05962f7Tb@81)
= K(@x78d5e565283f77bb2ca7e8bc09316286410d9e601a9272aca9106484d1cbddcc)
= K(0x564e7666e1ael183c711678de624T4134d8b992361c2fbd77ce5a03559¢c01d1dl)
= K(0x53bb67c902ba8baddclad6266b847e484fc6c7e3bbal3al988e8c371f521ce35)
= K((z_0-z_1) / (s_@-s5_1))
(s @xk-210) /r
d_a = K(d)
print("private key")
print(hex(d_a))
(k*=1)*(z_1+rxd_a) == s_1

Ny # X o
-~ T = -}

r
S
S
z
z
k

(=B

-> private key
-> @x681237cfclO06c4fede924717e7b6119e88339a4b2ebcd48a10269915e697817
-> True

17

« Easy to implement / hard to detect engine: only touched SHA-512

+ Recovered the secret key of the CA with 2 certificates, a simple script and a few CLI

+ As seen in previous talk: hard to catch for regular users

« Can we do more with just modifications of libcrypto? (for instance messing with libssl)

18

What are Engines in OpenSSL to modify or add new cryptographic schemes

+ How to easily misuse engine to introduce (not so easy to detect) flaws

« More and more engines / providers will be used with OpenSSL 3.0: be careful with the one you use

+ If you have any doubt about an engine found in the wild

sales-services@quarsklab.com

19

mailto:sales-services@quarsklab.com

Thank you!

Quarkslab

