
SSTIC 2023

Dahmun Goudarzi and Guillaume Valadon

Exploring OpenSSL Engines to Smash Cryptography

1



SSTIC 2023

Motivations

2



MOTIVATIONS

• NIST Post-Quantum Competition (2015-2023): new cryptographic libraries to be deployed. 
 
 

• Cryptographic migration always long and cumbersome. 
 
 

• Migration needs to be hybrid: classical and post-quantum working together: need for agility. 
 
 

• How to modify OpenSSL to support PQC and hybrid schemes proficiently ?

3



PATCHES VS ENGINES

• Patches: 
• direct modifications of the source codes 
• numerous files to modify
• prone to mistake induction and security flaws
• painful to dispatch

• Engines: 
• no modification of OpenSSL code 
• follow a strict API to define new schemes
• easy to dispatch and deploy: just a .so  
 

4

Same project adding several signatures schemes 
 into OpenSSL with both approaches



RISE OF THE ENGINES

• Numerous engines exist

• With OpenSSL 3.0, providers are  
introduced which brings even  
more agility. 
 
 

5



WHAT IF ?

6

Focus of this talk:
What if we replace standard, well studied cryptographic 

implementations by flawed ones

• API allows to replace most functions in libcrypto  
 
 

• How stealthy can a malicious engine be?



SSTIC 2023

OpenSSL and Engines



OPENSSL

8

• Applications: set of CLI calling libssl and  
libcrypto  
 

• libssl (composed of TLS Protocols): implements 
the TLS and DTLS protocols. 
 

• libcrypto (composed of Common Services,  
other Protocols, and {Legacy, Core, Default} Pro  
viders): implementations of numerous cryptogra  
phic objects and primitives. 
 

• Engines: extend the functionality of libcrypto via the  
Engine API.



STATIC VS DYNAMIC USE

9



ENGINES

• Introduced in OpenSSL 0.9.6 to bind low-level custom implementations of cryptographic algorithms

• Mostly used to enable hardware accelerators to replace the software counterpart 

• Good paper to implement your own engine:  
 
Start your engines: Dynamically loadable contemporary crypto. 2019 IEEE Cybersecurity Development  
by Nicola Tuveri and Billy Bob Bromley

10



ENGINES OVERVIEW

11



12

STATIC VS DYNAMIC USE



SSTIC 2023

Example on a PKIX

13



CHANGING SHA-512

14

• Built-in countermeasure against RNG failures.



MALICIOUS ENGINE FOR A CERTIFICATE AUTHORITY

• Simulating a Certificate Authority with the constant SHA-512 engine 

• Make the certificate issue at least 2 certificates with the engine (NB: even without the engine, those 
certificates will pass verification) 
 
 

• Extract the signature and to-be-signed from the certificate (simple CLIs) 
 
 

• Recovering the secret key

15





SAGE SCRIPT FOR RECOVERY

17



TLDR;

• Easy to implement / hard to detect engine: only touched SHA-512

• Recovered the secret key of the CA with 2 certificates, a simple script and a few CLI 

• As seen in previous talk: hard to catch for regular users  

• Can we do more with just modifications of libcrypto? (for instance messing with libssl)

18



CONCLUSION

• What are Engines in OpenSSL to modify or add new cryptographic schemes 
 
 

• How to easily misuse engine to introduce (not so easy to detect) flaws

• More and more engines / providers will be used with OpenSSL 3.0: be careful with the one you use

• If you have any doubt about an engine found in the wild

19

sales-services@quarsklab.com

mailto:sales-services@quarsklab.com


Thank you!


