
From dusk till dawn: toward an effective trusted

UI

Patrice Hameau, Philippe Thierry, Florent Valette
patrice.hameau@ledger.fr

philippe.thierry@ledger.fr

florent.valette@ledger.fr

Ledger

Abstract. Nowadays, secured embedded devices with high resolution
displays, in which user interaction for critical assets is a part of the trust
chain (user authentication, validation, etc.), leave the processing of the
Trusted User Interface to the general purpose processor. Indeed, such
displays are usually interfaced with MIPI-DSI and require an amount of
reactivity and power processing a Secure Element is unable to provide. The
fallback model is, for example in mobile markets, generally based on the
ARM® TrustZone [22] and Trusted Execution Environment mechanisms,
which imply that the Trusted User Interface relies on the very same cores
of the general purpose processor as the applicative Operating System. The
problem with such an architecture is that the ARM TrustZone security
model has been initially designed in 2004 [22] and is not always adapted
to the increased complexity of today’s systems in the light of last years’
new attack paths [15, 17, 18, 23, 29, 31]. In this article, we explain how
we modified the management of the display by the various components
of a representative mobile system including a separate Secure Element,
in order to ensure the protection of the critical assets managed by the
Trusted User Interface even when all the general-purpose components,
including the ARM TrustZone environment, have been compromised by
an attacker.

1 Introduction

The graphic subsystem, a part of the trust chain

As time goes by, user interaction is increasingly becoming an integral
part of the trusted data path, making it essential to have a secured user
interface in order to involve the end user in the execution of critical actions
or when manipulating sensitive assets protected by a Secure Element (SE).

This user interface may require simple interactions, such as the FIDO
User Presence [3] mechanism, or more complex ones such as Personal
Identifier Number (PIN) or passphrase entries.



2 Security of graphic Chains

In both cases, the user interface used needs to be trusted enough as it
is part of the global security mechanism [10], and thus is designated as a
Trusted User Interface (Trusted UI).

When executed using the very same hardware as the untrusted system
(same inputs and outputs), the Trusted UI accountability raises various
questions [30].

Upon manipulation of sensitive assets, such as passphrases entries,
the security requirements for the overall user interface are heightened in
accordance with the level of sensitivity of the data being manipulated.

State of the art and limitations of Trusted UI

The Trusted UI problematic, and more generally the ability to execute
different security levels that require user interactions is a complex problem.
It has been described in multiple papers and theses [28, 30] up to a
fully formal specification of the required properties a Trusted UI must
support [30].
Nowadays, in the mobile market, Trusted UI is being more and more
deployed in order to bring better security to user interactions when asset
confidentiality, integrity or authenticity is required. This is typically the
case when entering PIN entries (e.g. banking applications) or passphrases,
or for validating critical actions (e.g. money transfer).

As the Trusted UI uses the device’s main screen, it can’t be directly
managed by the SE, which has not the necessary power processing and
memory resources. It is thus often delegated to the Trusted Execution
Environment (TEE), based on ARM TrustZone technology. The graphic
chain support model chosen by the industry is usually based on dynamic
hardware switching of the devices required to manipulate the Trusted
UI from non-TrustZone world (normal world) to TrustZone one (secure
world).

Moreover, when any user-related security assets, such as PIN, is required
by the SE to authenticate the user or to unlock some SE related security
feature, it is performed using the Trusted UI. As a consequence, the asset
confidentiality directly depends on the Trusted UI integrity, accountability
and authenticity, potentially endangering the SE hosted services and assets.

The Android Open-Source Project has defined a methodology [8]
based on the Keymaster [20] implementation to respond to such needs. It
is still the sole protection element used in some TEE Operating System



P. Hameau, P. Thierry, F. Valette 3

vendors [13], despite the nowadays attack paths that have endangered
this design [15,17,18,23,31].

On the other side, Apple for example uses a dedicated proprietary
hardware architecture based on its own external Secure Enclave chip [6,32].

Based on the security state of the art defined above, the usual ARM
TrustZone based Trusted UI model suffers limitations impacting the
overall level of confidence and security that can be considered for such
implementations:

— The Trusted UI security domain accountability [30]
— The dynamic sharing of the graphic chain (input, output) on which

potential fault injection methods can be considered, including
remote ones [7, 15,23,31]

— The effective runtime protection (data confidentiality, integrity) of
the TEE software [17,29]

Despite the implementation of some security best practices, such
as handling power management at the Secure Monitor level in ARM
architecture, this model has limitations rooted in an outdated initial
design that fails to adhere to the principle of least privilege in practice:
the lower secure component, in general the applicative Operating-System
running in non-secure world (saying Android), has a huge amount
of privileges on the hardware platform (user I/O, frequency scaling,
SoC I/O mixer, etc.), impacting the higher security level Operating
System (saying the TEE). This design is the source of a lot of successful
attacks [15, 17, 18, 23, 31], and alternative or complementary solutions
should be considered.

To address this issue, we propose a new model that adheres to the
principle of least privilege, removing direct access to any potentially
critical hardware component from the lower secure component (e.g.
Android Operating system).
In our opinion, the para-virtualization model, as demonstrated by the
Genode team in 2014 [16], which uses a virtual touchscreen and virtual
frame buffers within the Android world, is a better solution that is highly
easier to verify and prove in terms of security and less prone to failure.
Moreover, in such an architecture, all the hardware devices impacting the
Trusted UI are dedicated to a security domain by design, with no dynamic
configuration at all. This enables the use of hardware lock registers, which
prohibits modification of the security domains configuration (access rights,



4 Security of graphic Chains

peripherals owned, ...) after first setup until the next full reset of the SoC.

In order to establish a reasonable security context for our proof of
concept (PoC), we have formulated a simplified generic threats model that
can be applied to various Android-based devices:

— Threat 1.1 The Android world is connected to the Internet
— Threat 1.2 The Android world, including the Linux kernel, is con-

sidered as too complex to be properly secured, and as a consequence
is considered as fully controlled by the attacker

— Threat 1.3 Software-based hardware attacks, such as [7,15,23,31]
are considered

— Threat 1.4 The device can be stolen and thus physical attacks can
be conducted to get access to critical assets, in scenarios that make
sense

— Threat 1.5 Non-intrusive hardware faults (typically EM-based)
are considered, in scenarios that make sense

Considering the above threats, some hypothesis are defined for our
security model:

— Hypothesis 1.1 The main SoC 1 documentation is correct
— Hypothesis 1.2 The main SoC IP 2 behave as specified and do

not hold any hidden features
— Hypothesis 1.3 The main SoC brings an in-chip separated com-

panion core (named Protected Core) and some On-Chip RAM
(OCRAM) with exclusive access to this core

— Hypothesis 1.4 the main SoC supports protection against any
bus master for its internal memories or peripherals (integration of
ARM SMMU 3 or equivalent)

— Hypothesis 1.5 The main SoC secure boot mechanism is trust-
worthy, protected against non-invasive attacks

— Hypothesis 1.6 The SE and the main SoC embedded software
used till the Protected Core startup are considered trustworthy.

With the above security threats and hardware assumptions in mind,
the Trusted UI proof of concept we have designed aims to adhere to the
following security considerations:

— Security property 1.1 The Trusted UI supports user account-
ability for managing critical assets

1 System On Chip
2 Intellectual Properties, devices embedded in-chip
3 System Memory Mangement Unit



P. Hameau, P. Thierry, F. Valette 5

— Security property 1.2 The Trusted UI component data at rest
protection is guaranteed

— Security property 1.3 The Trusted UI software runtime in-
tegrity must be guaranteed (using for example OCRAM 4 with ECC,5

monitoring, ...)
— Security property 1.4 The Trusted UI must resist to usual TEE

exploitation paths
— Security property 1.5 The Trusted UI must not be impacted by

any attack or corruption of the software running in applicative
security domain (e.g. Android, Linux, TEE)

— Security property 1.6 The Trusted UI must not depend on hard-
ware device(s) dynamic sharing. It shall rely on assignments of
access rights and peripherals to a dedicated security domain at boot
time, and the possibility to lock these assignments in hardware till
next SoC reset.

In the light of the above threats model, hardware properties and
security properties that we aim to achieve, we present a novel Trusted
UI architecture in Section 2. We then discuss the designed Trusted UI
performances, security impacts, advantages and drawbacks in Section
3. Finally, we describe what could be made to optimize the results and
optimize some limitations in Section 4.

Proof of Concept

To validate our work, we have developed a fully functional prototype
internally (referenced as PoC). It is based on a recent version of Android
AOSP running on an iMX8 SoC from NXP. It includes also a Secure
Element from STM and a high resolution display of 720p driven by a MIPI
DSI interface. The chosen iMX8 SoC integrates 4 Cortex-A53 cores and a
Cortex-M companion core, used as the Protected Core. The SoC supports a
Secure Boot mechanism, and integrates the hardware capabilities required
to enforce security domains isolation (SMMU, RDC, OCRAM, ...) and
locking mechanisms.

2 A new UX paradigm: Moving to three third architecture

In this section, we begin by outlining the general abstraction model we
used for the Trusted UI in Section 2.1. We then expose how the security

4 On-chip RAM
5 Error Correction Code



6 Security of graphic Chains

architecture is deployed and locked in Section 2.2. Some time is taken
in Section 2.3 to explain how the graphical output partitioning has been
made, as this is the more complex part. We conclude by detailing how we
completed the overall integration by including the input part in Section 2.4,
and the SE 6 connection in 2.5. As a final word, we finalize the description
of the overall hardening with additional elements in Section 2.6.

2.1 Virtualizing ARM64 graphic subsystem

Modern ARM64 SoCs sometimes hold a companion core, mostly in
industrial fields such as automotive or medical [9]. In most of those
cases, the companion core is designed for safety critical applications and
is associated with a set of hardware components in order to protect it
against any potential corruption from the main ARM64 core cluster.
To fully meet Properties 1.4 and 1.5 and minimize the impact of new
existing threats in the design of a mobile-oriented user interface, we
have decided to extract the overall graphical chain handling from the
ARM64 core complex by utilizing the in-chip companion core to host those
functionalities. Using a fully separated core is also considered instead of,
for example hardware virtualization because:

— hardware virtualization, including ARM64 one, is not immune at
all against various threats defined in Section 1, as explained in [12].

— hardware virtualization is fully-arch specific, making our architec-
ture non-portable to, for example RISC-V based architectures

The companion core, in our usage of the i.MX8 SoC, exclusively uses
in-chip dedicated memory banks and cache hierarchy that are separated
from the ARM64 core complex for its own usage.
This decision comes at the cost of hosting such a core in a design commonly
used in the industrial field. Based on these constraints, the goal of the
Proof of concept is to evaluate the impact on security, performance and
consumption of the overall solution.

Having decided to utilize the companion core to host the Trusted UI, and
given that this core is inherently immune to various threats associated with
the ARM64 core complex, we refer to the overall core (companion core
and associated resident firmware) as the Protected Core in the following.
The usage of a such a core for the Trusted UI gives us various advantages:

— its execution starts before any of the ARM64 core cluster OSes
(TEE and Android typically)

6 Secure Element



P. Hameau, P. Thierry, F. Valette 7

— The companion software execution is fully independent from the
normal world, on a separated core, power domain and clock domain

— the companion software execution is not impacted by any of the
ARM64 core cluster cache-based side-channel

— the Protected Core software is significantly smaller than TEE imple-
mentations. This allows us to incorporate noRTE code validation,
fault-resilient implementation, control flow integrity considerations,
etc.

— the Protected Core Software can be fully hosted in OCRAM
(code+data), excluding the DDR for its own usage

— the Protected Core has a limited scope of operation and does not
support additional applications unlike TEE OSes. As a result, it
will not host any potentially buggy trustlet

— the Protected Core uses a highly simple, hardware-based, commu-
nication interface with the ARM64 core cluster

— as the Protected Core has a different architecture and mapping,
there is no data pointer used, but only identifiers, avoiding attacks
such as [27]

At the same time, to comply with Property 1.6, we have chosen
to adopt a similar approach as the Genode team [16], by utilizing
para-virtualization methodology. The main difference with the Genode
proof of concept being the use of a fully separated hardware core instead
of an ARM TrustZone based virtual machine monitor.

In our proof of concept, we move the overall control of the graphic
chain, including the LCDIF 7 controller, the MIPI 8 bridge controller and
the panel interactions to the Protected Core. Additionally, we also shift
the responsibility of the touchscreen controller’s low speed bus (in our
case, an I2C 9 controller) to the Protected Core.
Based on this design, the Protected core then behaves as a graphical
proxy between the main ARM64 core cluster and the actual physical
graphic chain.

Moreover, in our proof of concept, the Protected Core also behaves as a
proxy between the SE and the main SoC ARM64 core cluster. Based on this
architecture, the Protected Core is able to respond in an autonomous way
to highly secure-critical SE requests, and to display Trusted UI elements or

7 LCD Interface
8 Mobile Industry Processor Interface
9 Inter-Integrated Circuit



8 Security of graphic Chains

to read user inputs without requiring any ARM64 core cluster execution.
This is done by taking full control of the input/output interfaces that
the Protected Core already manages, allowing high security user interface
management (PIN requests, etc.) in direct interaction with the SE.
By doing that, we comply with our Security Model Property 1.5. As there
is no hardware device cross-domain switching required in order to enable
the Trusted UI interface, we also comply with our Security Property 1.6.

In order to ensure the accountability of the Trusted UI, the user must
have a secure way to confirm that the effective displayed UI is managed
by the Trusted UI. This is required in order to comply with Property 1.1.
The key advantage of our design is the proxy model, in which the
Protected Core is alway the sole component controlling the screen. Based
on this principle, the Protected core can dedicate a part of the output
framebuffer in order to keep a secure bar with a dedicated informational
value, typically in the way described in [30].

Given that the graphical subsystem is fully hosted in the Protected
Core, it is imperative that this core is fully protected against any direct or
indirect exploitation from the main ARM64 core cluster. This includes the
Protected Core itself, and all the devices used for the Trusted UI data and
control plane, and the SE communication. We describe how we harden
the Protected Core in Section 2.2.

Once the graphical chain is managed by the Protected Core, a fast
hardware synchronization mechanism between the ARM64 core complex
and the Protected Core is required in order to allow enough reactivity for
graphical events, as the ARM64 software does not manage anymore any
of the effective hardware involved in the graphical chain. This requires
a hardware component able to communicate easily and fast between
different clock domains, to abstract any synchronization complexity
between the two core complexes. In our proof of concept, the i.MX8 SoC
does have such an IP for this usage, denoted MessagingUnit. This unit is
a basic four-register-based mailbox device that generates interrupt events
between peers when the registers are set.

In order to efficiently communicate between core complexes with this
IP, a fully synchronous simple protocol has been designed, based on the
basic structure defined in Table 1.

There are multiple message-types for different requests and responses
that determine the potential type and value of arguments.



P. Hameau, P. Thierry, F. Valette 9

register size type

r0 u32 message-type
r1 u32 auth-token
r2 u32 arg
r3 u32 crc32(r0,r1,r2)

Table 1. Generic communication structure between core complexes

The MessagingUnit-based communication protocol is, at the time of
this article, a fully synchronous protocol, which is reactive enough for
our performance needs, as described in 3. This also makes the protocol
stack implementation highly easier to implement and to prove in terms of
noRTE and functional correctness.

The overall protocol specification is not described in this article for
the sake of clarity. Nevertheless, all the protocol frames respect the above
specification.

2.2 Hardening the Protected Core

Authenticate peers through the MessagingUnit In the security
model we have defined, the only way of communication with the Protected
Core is through the MessagingUnit hardware interface.

The SoC datasheet specifies that:

— the MessagingUnit handles two registers sets per half-duplex com-
munication pipe:
— four write-only registers in A (resp. B) domain, that triggers B

(resp. A) domain after writing the 4th register
— four read-only registers in B (resp. A) domain, that correspond

to the content of A (resp. B) domain registers at interrupt time
— A and B domains are hardware-associated respectively with the

ARM64 core complex and the Protected Core core complex
— write registers are write-only. Reading from them returns only 0x0

— a given domain can’t access remote domain registers

The communication is made using the basic synchronous protocol in-
troduced in Section 2.1. In our design, two couples have to communicate
through this interface:

— Android kernel <=> Protected Core
— TEE kernel <=> Protected Core



10 Security of graphic Chains

The goal here is to enable the TrustZone-based User Interface, even if,
in our security model, such an interface is not considered secure enough for
our needs. In our model, the effective Trusted UI security is associated to
a fully independent execution of the eSE / Protected Core couple, indepen-
dently of the ARM64 core complex, making the MU peer authentication
corruption out of the scope.

Nonetheless, to enable such a support, the MessagingUnit is set at
a given time t to a given security level (TrustZone security flag), by
configuring the SoC dedicated IP: the CSU.10 The switch, in our model,
is under the responsibility of the Protected Core, and peers are informed
when they are allowed to speak through the Messaging unit. This allows
to naturally authenticate the Protected Core remote peer, with the help
of the TrustZone hardware mechanisms.

In the meantime, we consider in our threat model that:

1. the CSU configuration of the MessagingUnit device may fail (bad
error catching)

2. the CSU configuration of the MessagingUnit device may be attacked
(fault injection)

3. the Protected Core context may be corrupted (run time error,
single fault injection)

To increase the level of authentication of the Protected Core remote peer,
an additional mechanism has been added to the communication protocol,
by adding an authentication token with anti-replay protection. This is
achieved by sharing an internal state seed initializer at boot time with
each peer, for each half-duplex communication, which must be used as
soon as the init state is terminated.
In our proof of concept, the RNG source used for this seed in the pro-
tected core is the SoC CAAM (Cryptographic Acceleration and Assurance
Module) TRNG module. The random value is loaded at early Protected
Core boot time, while no other software than the Secondary platform
Loader is started.

In order to share this seed with each peer and associate it with the
corresponding security context, we use the ARM secure boot sequence
which guarantees the boot order. The platform boot order is, in our case,
the following:

10 Central Security Unit



P. Hameau, P. Thierry, F. Valette 11

1. bootROM startup, secure boot bootstrap

2. Secure Platform bootloader (e.g SPL), which includes Protected
Core loading

3. Protected Core startup

4. Secure Monitor (e.g. ARM TF-A) startup

5. Trusted Execution Environment (TEE) OS startup

6. Normal world bootloader (e.g. U-BOOT) startup (after Secure
Monitor switch from TEE)

7. Normal world OS (e.g. Linux)

8. Android boot

This allows the Protected Core to first negotiate a seed vector with the
TEE first, and then with the Android kernel.

To authenticate the emitter once the initialization sequence is done,
this seed is used in order to generate a predictable sequence of randomly
generated numbers using the PCG32 [21] algorithm each time a frame is
emitted between peers. Each generated number is written in the auth-token
field of the communication structure described in Section 2.1, and checked
by the receiver, which locally generates the very same random sequence
as its remote counterpart.

The big advantage of the PCG32 algorithm is its cost: executing a
PCG32 increment can be done in a few nanoseconds, in comparison with
a complete cryptographic sequence such as a full HMAC algorithm.
In our performance model, such an advantage is critical to be able to keep
reasonable graphical performances, as described in Section 3.

Listing and protecting all critical hardware components

Once the communication between the Protected Core and the ARM64
core complex is secured, a lot of work is still needed.
First, a lot of hardware components are required in order to properly
manipulate the user interface. This requires input and output interfaces,
including both high-speed (typically MIPI) and low speed (usually I2C
or SPI) communication buses. In order to use these buses, the SoC I/O
muxer and the GPIO(s) controller(s) to which these devices are connected
also need to be involved.
Communication buses also require input clock configuration (input PLL



12 Security of graphic Chains

setting).
The communication bus (simple serial communication bus, such as SPI)
with the eSE also needs to be protected, including, again, its associated
GPIO controller.
Figure 1 describes all the hardware components required in order to enable
a functional user interface.

Fig. 1. Hardware components impacting the Trusted UI

In a dynamic model, in which the Trusted User Interface needs to be
switched from one security level to another, the ownership of all these
components needs to be transferred, and their registers need to be verified
by the upper security level to validate the proper Trusted UI data plane
configuration.
If not, most of them can be used in order to redirect a part of the flow,
inject custom content (typically using the I/O muxer), spy the input
events reception (by polling the touchscreen corresponding GPIO pins),
and so on.

In our security architecture, all devices but the Power controller have
been locked under the Protected Core responsibility. Therefore ownership



P. Hameau, P. Thierry, F. Valette 13

is clear and the configuration of registers can be locked at the earliest
boot time with a quite small TCB at that time. The Power controller is
a special case because efficient power agility on various devices must be
kept without requiring too much effort from the Protected Core itself.
To achieve that, the Power controller control is shared between the Pro-
tected Core and the secure monitor exclusively, with a static filtering
mechanism for devices that are under the Protected Core domain in the
secure monitor power driver implementation. By doing that, the secure
monitor never manipulates the Protected Core relative devices, Android
and TEE have no access but secure monitor calls to request any power
control update.11

Meanwhile, the Protected Core validates the overall IPs power and clock
configuration each time the Trusted UI is used, detecting potential cor-
ruption.

To ensure an efficient separation of the Protected Core devices domain
and the ARM64 core complex domain, we use the i.MX8 Resource Domain
Controller. This controller is able to strictly separate all bus masters, in-
cluding the core complexes themselves, in differentiated worlds, disallowing
uncontrolled inter-domain communication.
The Resource Domain Controller configuration is under the full control of
the Protected Core itself, and all dedicated devices are locked during the
Protected Core startup at the earliest boot time.

Secure booting the Trusted UI

In order to comply with Security Property 1.2, the overall Protected Core
software image must be a part of the platform secure boot process. The
secure boot process is initiated by the BootROM based on in-chip eFuses
holding a public key, associated with a cryptographic component used in
order to successively validate the initial images. For the sake of clarity,
the secure boot process is considered out of scope and is not explained in
this article but is based on the standard NXP High Assurance Boot [4]. In
the HAB process, the Protected Core image has been added to the initial
boot image checked by the Secure Platform Loader, based on modified
SPL/U-BOOT software, adding data at rest integrity and authenticity
emanated from the secure boot public-key based signature check.

11 A potential full move of the power control to the Protected Core is also analyzed to
fully protect this part



14 Security of graphic Chains

Now that the platform hardening has been made and all Trusted UI secu-
rity properties fulfilled, the actual implementation needs to be explained.

2.3 Plugging in all together

About MessagingUnit UI-related frames

The display pipeline is moved under full control of the Protected Core, the
virtual CRTC API is exposed through MessagingUnit as seen in Section
2.1. Based on the protocol description in Section 1, upper layer software
can emit messages (with content), emit signals (without content), receive
messages (with content) and signals (without content).

All messages emitted through the MU are associated to a status
response, which is a dedicated message handling a ’response’ bit. This
response is emitted by the peer and returns the result of the peer message
handling.

Virtual CRTC API The virtual CRTC API is composed of a few endpoints
in order to enable a peer to enable/disable the display pipeline and swap
the scanned out framebuffer. The framebuffer may be directly rendered or
composed from a secure and a non secure frame (see Section 2.1) :

— vblank event 12

— Message type: Request / Emitter: Protected Core peer
— Description: On hardware vblank interrupt, a message is sent

to peers. Thus, peers can commit the next framebuffer, if any,
and start rendering any further frame.

— disable display
— Message type: Request / Emitter: Cortex-A53 core peer
— Description: On "disable display" reception, the protected core

will turn off the panel and stop transferring framebuffers to
LCD controller

— enable display
— Message type: Request / Emitter: Cortex-A53 core peer
— Description: On "enable display" reception, the protected core

will configure the graphical pipeline, i.e. LCD controller and
MIP DSI bridge, according to the current modeline. Once done,
LCD controller to MIPI DMA transfer is armed and the panel
is turned on.

12 Vertical blanking is the period from the end of a framebuffer scan out and the
beginning of the next frame



P. Hameau, P. Thierry, F. Valette 15

— update framebuffer ID
— Message type: Request / Emitter: Cortex-A53 core peer
— Description: Program the next framebuffer to display. This

command will not apply any changes in order to prevent tearing.
The new framebuffer commit must be done during vertical
blanking. This can be handled by hardware. In our proof-of-
concept, the LCD controller has a shadowed register in order to
get tearing free page flip. Shadowed register will be committed
at next vsync event 13 once refresh is programmed.

— refresh framebuffer
— Message type: Request / Emitter: Cortex-A53 core peer
— Description: Tells hardware to start using the previously de-

fined framebuffer. Depending on hardware capabilities, this
commands tells hardware to commit its shadowed register or
emulate this behavior in software by using vblank interrupt.

Virtual Input API

— Input touch event received: position number
— Message type: Request / Emitter: Protected Core peer
— Description: On hardware input touch interrupt, the number of

active position (finger(s) on screen)
— Input touch event received: position

— Message type: Request / Emitter: Protected Core peer
— Description: On hardware input touch interrupt, the touch data:

positions (x/y) and state (pushed, released, kept, moved)

Integrating to the Trusted Execution Environment

In this article, we consider that today’s TEE implementations are based
on a basic framebuffer interface [11] that can be easily plugged over
the MessagingUnit mechanism. On the contrary, in Android, the display
ecosystem is highly more complex and requires bigger performances.
As a consequence, we decide to focus this paper on the way we virtualize
the Android operating graphical chain, and leave the Trusted Execution
Environment apart.

Integrating to Linux DRM subsystem

13 Vsync is the beginning of a frame scan out



16 Security of graphic Chains

The Linux DRM 14 layer is the infrastructure that helps complex GPU 15

driver writing. Each driver can handle a wide range of features such as
3D rendering, KMS,16 GEM 17 object allocation, etc.

Here, we are building a DRM driver for display pipeline (Figure 2) only,
so we need to implement three DRM features, ATOMIC, MODESET and
GEM [2,14]. The DRM device controlling the virtual display pipeline owns
a single DRM CRTC 18 device with only a primary plane (i.e. no cursor
plane nor overlay). Encoder and Connector are DRM devices of virtual
type as they are not handled anymore by the DRM subsystem.

Fig. 2. Simple DRM display pipeline

DRM CRTC The CRTC controller drives the display setting and timing
and is responsible for scanning the framebuffer [2]. The driver handles the
following events from the display controller:

1. VBlank interrupt

2. "DRM refresh" command

3. "Display enable" command

4. "Display disable" command.

DRM PLANE A DRM plane holds a state that defines the current buffer
of this plane and the bound CRTC. Due to hardware limitation, we only
support one primary plane (no cursor nor overlay) and composition is done
in user space [1]. On DRM MODE COMMIT action (Figure 3), the new
plane state, with the next framebuffer to render is committed atomically.
The corresponding plane update helper [2] sends the next framebuffer to
display to the Protected Core.

14 Direct Rendering Manager
15 Graphics Processing Unit
16 Kernel Mode Setting: display configuration
17 Graphics Execution Manager
18 Cathode Ray Tube Controller



P. Hameau, P. Thierry, F. Valette 17

Fig. 3. DRM mode atomic commit

GEM CMA The GEM contiguous memory allocator can only allocate
memory for framebuffer objects at fixed place due to security and hardening
considerations discussed in Section 2.2. All rendering steps are done in
the 2D/3D GPU by Android graphical stack [1] and the final layers
composition targets the previously allocated framebuffer. Thus, our driver
needs to support PRIME 19 buffer export, but, those design constraints
imply that PRIME buffer import can’t be supported.

In order to force memory location of each framebuffer, the driver
needs to handle a reserved memory region [2] with shared-dma-pool
and no-map attributes for each framebuffer. Each DMA pool is used to
allocate a unique framebuffer, thus the base address of each buffer is
known and predictable as shown in Figure 4.

Fig. 4. DRM GEM CMA allocator

Based on the above implementation, the linux DRM-compatible graphic
chain has been connected to the Protected Core through the MessagingU-

19 PRIME is the cross device buffer sharing framework in DRM



18 Security of graphic Chains

nit, in association with three predefined framebuffers, in order to let the
GPU3D controller manipulate the Android-level rendering and schedule.
These framebuffers addresses are known at build time and shared with
the Protected Core, as shown in Figure 5.

2.4 Integrating to Linux Input subsystem

The Linux Input layer is the infrastructure that unifies all input devices
in order to abstract the various input hardware to an unified input types
for devices such as touchscreens, mouses, and so on. On the opposite of
the DRM subsystem, the Linux input subsystem is a quite easy system in
which the lower driver only registers itself and triggers the upper input
API.

The framing model described in the beginning of this section is sufficient
in our Proof of Concept to manipulate a touchscreen through a virtualized
architecture using the MessagingUnit. In this model, the device-specific
implementation is kept in the Protected Core. This includes the interrupt
handling and the associated I2C requests in order to get back the associated
event information.
The positioning and state information (coordinates vector, number of
fingers, touch type, etc.) is then emitted through the MessagingUnit toward
the current User interface target driver, which handles the positioning
information in its own context (input subsystem in Linux, etc.).
For the sake of simplicity, we have limited the input support to basic
multitouch (no palm support).

2.5 Activating TrustedUI: from proxying to local looping

Now that we have a real input/output proxy held in the Protected
Core between the ARM64 core complex and all the hardware IPs used in
the input/output subsystem, a last brick is added to the Protected Core:
a proxy integration between the SE and the TEE.

When the SE software needs to manipulate sensitive assets or perform
critical actions (e.g. unlock some feature using a PIN or execute some
cryptographic service), it then sends a request to activate the Trusted UI.
Through its proxy position in the communication between the SE and the
ARM64 core complex, the Protected Core will intercept such a request
and setup the Trusted UI to perform the required secured user interaction.
The ARM64 core complex may even not be informed of such requests.



P. Hameau, P. Thierry, F. Valette 19

As the SE hardware interface with the main SoC is a low-speed communica-
tion bus (e.g. SPI, ISO7816, etc.), such a proxy can be easily implemented
in the Protected Core in a very small amount of code.

The overall architecture including both Linux kernel and Trusted
Execution OS is described in Figure 5.

Fig. 5. General graphic proxy architecture

Managing some Trusted UI requests in the Protected Core necessitates
a basic implementation of some user interface elements, such as basic
graphical drawing (circle, rectangle) and character set encoding. These
elements being kept simple, they can be implemented using a small amount
of code.
In the end, adding a proxy with the SE allows to enforce the robustness of
the Trusted UI activation, with a minimal impact on the Protected Core
TCB size and complexity.

2.6 Icing on the cake: formal proof

As the Protected Core interface with the ARM64 core complex is quite
simple and based on a fully specified communication protocol written using
a state automaton, it has been possible to verify it using the Frama-C
framework (in the same fashion as the Wookey project [5, 26]).



20 Security of graphic Chains

The communication interface has been checked against run-time errors
and the state automaton correctness validated.
Supplementary protections against faults based on usual resilient coding
patterns are also being used in a way that was previously analyzed in
term of security [19].

3 Results and discussion

3.1 Security gains

Based on the global security architecture we have deployed, we can
consider that:

1. No additional cold-boot attack path is leveraged by this architec-
ture, in comparison with an ARM TrustZone-based security service.
The Protected Core firmware is fully deployed at the earliest boot
time, before the TrustZone components such as the Secure Monitor
and the Trusted Execution Environment Operating System, with
a very minimal TCB (SPL code only).

2. The usage of the para-virtualization paradigm instead of dynamic
hardware resources control switch is a strong security enhancement,
as it allows resources to be fully locked to one the defined device’s
security domains at boot time (the lock using the lock register bits
of the hardware security controllers and remaining active till next
SoC hardware reset). Using such a model, a strict delimitation be-
tween the initialization (configuration definition) and the runtime
(locked configuration) phases reduces the critical temporal window
to the startup sequence, during which neither the Android oper-
ating system nor the TEE is started, and at a moment where the
device is not yet connected to any external parts (the SoC startup
sequence being fully in-chip, using exclusively the OCRAM and
the internal peripherals). Through para-virtualization methodology,
the para-virtualized worlds are easier to support when in back-
ground, as there is no hardware device (un)locking that may fail
the driver or the power management support, leading to potential
instabilities and attack paths. Instead, the para-virtualization layer
simply drops messages when the peer is in background, keeping an
unified implementation without any potential complex attribution
mechanism.

3. During the runtime sequence, the Protected Core is not exposed to
any of the usual main cores cluster side channels based on shared



P. Hameau, P. Thierry, F. Valette 21

cache, shared memory and shared processor resources. However,
enforcing the required isolation of the Protected Core cannot be
done in a trivial and automated way: it requires a full analysis of
any potential direct (mapping) or indirect (through bus masters)
accesses between the defined security domains. On one hand, this
allows a clear and easy way to analyze separation between the
security domains and on the other hand requires from the hosting
SoC the capacity to properly separate such security domains for
all the devices embedded in the SoC design.

4. The graphic management proxy methodology used is an efficient
way to strictly demonstrate the accountability of a given screen,
when keeping a part of the output buffer under exclusive control
of the Protected Core itself. Keeping such a part always displayed
with an explicit informational value allows specifying which level
of security is shown on the other parts of the screen (for example
by using a color bar always present on one side of the display),
and allows to fulfill formal accountability requirements needed in
Trusted UI described in [30]. Other mechanisms more complex than
a color bar can also be imagined, including the use of dedicated
external LEDs aside of the display under exclusive control of the
Protected Core or of the SE.

5. the proxy model is a full enabler to a fully independent eSE-
controlled Trusted UI, requiring no action from neither the Android
nor the TEE world.

3.2 Performances

In our PoC the overhead of graphical pipeline virtualization on per-
formance is very limited. There is no impact on rendering in user space
as the framebuffer object can be exported and thus shared between our
DRM driver and GPU vendor one. Android plane composition is done by
GPU 2D hardware accelerator directly in the normal world framebuffer
managed by the Protected Core. Compared to direct hardware handling in
Linux kernel, VBlank event notification costs an extra message exchange
sequence using MessagingUnit, and Mode Atomic Commit two extras
exchanges.

The MessagingUnit latency was measured by software using Linux
kernel ktime infrastructure on continuous ping exchange with the Protected
Core. We were printing the time interval every 10

5 exchanges. Table 2
shows ten consecutive measurements of one hundred thousands samples.



22 Security of graphic Chains

samples latency for 10
5 exchanges (nanoseconds) mean latency (microseconds)

10
5 362729875 3.627

10
5 362849250 3.628

10
5 362576750 3.625

10
5 362880375 3.628

10
5 362818625 3.628

10
5 362577500 3.625

10
5 362654250 3.626

10
5 362785750 3.627

10
5 362909125 3.629

10
5 362696625 3.626

total latency for 10
6 exchanges (nanoseconds) mean latency (micro seconds)

10
6 3627478125 3.627

Table 2. MessagingUnit latency

The cost of virtualization using MessagingUnit, i.e. three extras mes-
sages, is about 3 × 3.627 = 10.88µseconds. Given the hardware character-
istics of the display panel used for the PoC, an AMOLED with a 720p
resolution and with a vertical sync pulse of three lines long, a line is
about 795 pixels long. With a pixel clock at 60 MHz, the VBlank period
is 39.75µseconds. Thus, virtualization consumes one fourth of the VBlank
period.

3.3 Discussions

General gains, Limitations and restrictions

The overall security architecture based on a separated graphical proxy in a
dedicated core, the Protected Core, is not linked to specificities of the ARM
architecture. Applications of such graphical proxy architecture are thus
possible in other system architectures, including for example RISC-V based
SoCs. Yet, it implies that the used SoC includes a companion core, and
the ability to have a dedicated isolated security domain for it with strictly
separated access and peripherals exclusive attribution. NXP supports this
on iMX8 SoCs family, as well as others such as Renesas [24,25].

In our current PoC design some mechanisms have not been imple-
mented or considered:

— Harmonized support of display rotation:
The display rotation, i.e. the framebuffer contents orientation, is
under each Security Domain responsibility. The Android operating
system uses the GPU 2D hardware accelerator to rotate its display



P. Hameau, P. Thierry, F. Valette 23

as it needs, the graphical proxy managed by the Protect Core having
no role here in the chosen orientation. However, in our current
design, the Protected Core is not informed of the chosen display
orientation, which may be an issue when it manages elements such
as a secure bar which will then be always set on the same side,
whatever the used orientation. This limitation can be easily lifted
if required by adding dedicated messages to the Protected Core to
keep it informed of the orientation chosen by Android.

— Secure bar covering a part of the display:
We have identified two possible solutions to add a secure bar:

1. Declare a screen resolution to the main cores cluster peers
smaller than the real display resolution (e.g. 1440x900 against
1600x900 pixels). This allows the Protected core to dedicate
the height difference (e.g. 160 pixels here) to the secure bar it
manages without dropping out any part of the peer framebuffer
contents.

2. Keep the very same resolution and always overlay a part of the
screen when generating the output framebuffer. The Android
world then always has a part of its screen hidden.

The first solution seems more convenient, but is harder in practice
as the effective resolutions supported by both the display and
the GPU may not be versatile enough to get a proper secure bar
rendering. In order to offer proper confidence level to the user,
the second solution may be accompanied by a dedicated secure
indicator (e.g. a LED), which is directly driven by the Protected
Core or the SE. There is however no real software-related differences
in term of complexity for each solution.

— Secure bar interactions:
The secure bar managed by the Protected Core can be considered
as an always-on dedicated secure graphical panel with which the
end user can interact, whatever the currently security domain
displayed is. This is easily feasible as the input positions associated
to the dedicated screen part can be used for local actions, under
the responsibility of the graphical proxy implementer.

— Power management:
Specific power management actions (e.g. battery low warning)
are not considered once entered in the Trusted UI in our current
implementation. The Protected Core is not informed of a given
battery state or potential power off risk. We consider that the
Trusted UI will be used for a very short time, with a timeout if



24 Security of graphic Chains

there is no action from the user. The power state should therefore
not evolve significantly during this time. The global security impact
of power issue still needs to be fully analyzed. If required, Trusted
UI cancellation messages sent to the Protected Core by the power
management system could be implemented.

Possible evolutions

In-Chip communication with Protected Core In our current architecture,
one last hardware component still requires to be dynamically switched
between the normal and secured (TrustZone) worlds: the MessagingUnit.
Nevertheless, in our hierarchical abstraction, it can be easily modified by
moving the hardware mailbox manipulation down to the Security Monitor.
Then the Security Monitor itself is responsible for handling the access
from both worlds, based on the current state reported by the Protected
Core.

The main advantages in implementing this evolution are:

1. The overall SoC-specific implementation is pushed back to the
Secure Monitor. The virtual drivers hosted in both Linux and the
TEE OS then only use the ARM SMC standard calls as underlying
interface.

2. The Secure Monitor can keep the Protected Core synchronized
with any switch between the normal and secure (TrustZone) world
by sending it a dedicated message.

3. The hardware mailbox backend can be locked to the Security
Monitor security domain at early stage of boot (as no switch is
required).

The possible drawbacks would be:

1. As the Security Monitor is managing requests from both worlds,
the peer authentication becomes more critical for the Protected
Core, requiring the initial PCG32 usage to be re-analyzed with a
consideration for this new design.

2. The latency would increase, as a Secure Monitor call is required
for each event in the display control plane. The impact may be
significant, typically upon graphic VBlank requests.



P. Hameau, P. Thierry, F. Valette 25

From in-Chip to external Protected Core In the case of an out of Chip
eSE / Protected core couple, the communication between the main SoC
software (Android, Trustzone) and the Protected Core itself would require
a more hardened channel as the one described in section 2.2 which offer
only limited security for anti-replay and authentication (but which is fine
inside a SoC).
The idea here would be to use a secure channel with session keys gener-
ated upon each boot of the platform. The data exchanged would then be
classified in two categories: the standard ones which have no impact on the
security (e.g. change screen luminosity) and sensitive ones relative to the
Trusted UI. Having two categories will allow to keep optimal performances
in case of limited bandwidth of the communication channel. The sensitive
data will always use signature (MAC), and optionally encryption, when
exchanged. The secure channel will be based on a security proven but
efficient protocol, as for example SCP with AES from GlobalPlatform.
The root keys used for the secure channel will be generated by the SE dur-
ing the very first boot of the platform in secure production environnement.
They will be transmitted to the SoC, and then stored securely in its eFuse.
The idea being to use the hardware security mechanism attached to boot
level that is in general available with eFuse storage in order to allow access
to them only during the first stage of the boot: even if the Applicative
Operating System is corrupted, access to them is impossible as hardware
locked.
Additionally, to cope with possible weaknesses of the RNG of the SoC,
the session key generation performed at the early stage of each boot will
make sure to use also RNG values issued from the SE connected to the
Protected Core.

4 Conclusion

In this article, we have described a novel architecture based on an
heterogeneous in-SoC cores cluster set, in order to enhance the security
of user interactions on critical assets managed by any backend Secure-
Element, through a Trusted User Interface (Trusted UI) based on high
resolution displays (often driven using MIPI-DSI interfaces). Our proof of
concept proposes a new hardware-software hybrid architecture that aims
to support security-critical user interactions performed with a Trusted
UI, while significantly reducing the attack surface compared to traditional
ARM TrustZone based Trusted UI architectures.
During the solution design, we strived to maintain overall concept princi-



26 Security of graphic Chains

ples independent of ARM-specific considerations, preserving the possibility
of utilizing alternative architectures such as RISC-V for either the main
cores cluster or the Protected Core. We have demonstrated that it is
possible to fully implement a proxy of the user interface, thus maintaining
complete control over user interactions in a secure way, without compro-
mising the graphical performances.
The proof of concept we built still needs refinements in terms of power
consumption analysis and user experience design for the Trusted UI part.
We are however confident in the ability of the Protected Core, based on a
Cortex-M CPU, to have limited power consumption impact.
During the design of our proof-of-concept, we selected the Trusted UI as
the first challenging work on which a novel architecture can be designed.
But our work also opens doors to implement similar proxies for other
security impacting hardware components, such as gyroscopes, light sensors,
etc.

References

1. Graphics | Android Open Source Project — source.android.com. https://source.

android.com/docs/core/graphics.

2. The Linux Kernel documentation — kernel.org. https://www.kernel.org/doc/

html/v5.10/, 2020.

3. Dirk Balfanz. Fido u2f implementation considerations. FIDO Alliance Proposed
Standard, pages 1–5, 2015.

4. Nahom Aseged Belay. Securing the boot process of embedded linux systems.
Master’s thesis, NTNU, 2022.

5. Ryad Benadjila, Cyril Debergé, Patricia Mouy, and Philippe Thierry. From cves to
proof: Make your usb device stack great again, 2021.

6. Dave Bullock, Aliyu Aliyu, Leandros Maglaras, and Mohamed Amine Ferrag.
Security and privacy challenges in the field of ios device forensics. AIMS Electronics
and Electrical Engineering, 4(3):249–258, 2020.

7. Yue Chen, Yulong Zhang, Zhi Wang, and Tao Wei. Downgrade attack on trustzone.
arXiv preprint arXiv:1707.05082, 2017.

8. Janis Danisevskis. Android protected confirmation: Taking transaction security to
the next level. https://android-developers.googleblog.com/2018/10/android-

protected-confirmation.html, 2018.

9. Simone DI BLASI. Development of a touch screen display with haptic functionality
and a graphical user interface in a heterogeneous multi-core and multi-processor
environment. 2021.

10. Thomas Fischer, Ahmad-Reza Sadeghi, and Marcel Winandy. A pattern for secure
graphical user interface systems. In 2009 20th International Workshop on Database
and Expert Systems Application, pages 186–190. IEEE, 2009.

https://source.android.com/docs/core/graphics
https://source.android.com/docs/core/graphics
https://www.kernel.org/doc/html/v5.10/
https://www.kernel.org/doc/html/v5.10/
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html
https://android-developers.googleblog.com/2018/10/android-protected-confirmation.html


P. Hameau, P. Thierry, F. Valette 27

11. GlobalPlatform, Inc. Trusted User Interface API v1.0, 6 2013. software interface
Specification.

12. Nathaniel Hatfield. Software-based side channel attacks and the future of hardened
microarchitecture. 2021.

13. Richard Hayton. The benefits of trusted user interface (tui). https://www.

trustonic.com/technical-articles/benefits-trusted-user-interface/,
2020.

14. Kocialkowski. Walking Through the Linux-Based Graphics Stack. In Embedded
Linux Conference Europe 2022. ELCE, 2022.

15. Nikolaos Koutroumpouchos, Christoforos Ntantogian, and Christos Xenakis. Build-
ing trust for smart connected devices: The challenges and pitfalls of trustzone.
Sensors, 21(2):520, 2021.

16. Genode labs. An exploration of arm trustzone technology. https://genode.org/

documentation/articles/trustzone, 2014.

17. Ben Lapid and Avishai Wool. Cache-attacks on the arm trustzone implementations
of aes-256 and aes-256-gcm via gpu-based analysis. In International Conference on
Selected Areas in Cryptography, pages 235–256. Springer, 2019.

18. Moritz Lipp, Daniel Gruss, Raphael Spreitzer, Clémentine Maurice, and Stefan
Mangard. {ARMageddon}: Cache attacks on mobile devices. In 25th USENIX
Security Symposium (USENIX Security 16), pages 549–564, 2016.

19. Thibault Martin, Nikolai Kosmatov, and Virgile Prevosto. Verifying redundant-
check based countermeasures: a case study. In Proceedings of the 37th ACM/SI-
GAPP Symposium on Applied Computing, pages 1849–1852, 2022.

20. René Mayrhofer, Jeffrey Vander Stoep, Chad Brubaker, and Nick Kralevich. The
android platform security model. ACM Transactions on Privacy and Security
(TOPS), 24(3):1–35, 2021.

21. Melissa E O’Neill. Pcg: A family of simple fast space-efficient statistically good
algorithms for random number generation. ACM Transactions on Mathematical
Software, 2014.

22. Sandro Pinto and Nuno Santos. Demystifying arm trustzone: A comprehensive
survey. ACM computing surveys (CSUR), 51(6):1–36, 2019.

23. Pengfei Qiu, Dongsheng Wang, Yongqiang Lyu, and Gang Qu. Voltjockey: Breaching
trustzone by software-controlled voltage manipulation over multi-core frequencies.
In Proceedings of the 2019 ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 195–209, 2019.

24. Renesas Electronic Corporation. R-Car-H3ne, 8 2022. hardware user manual.

25. Renesas Electronic Corporation. R-Car-M3e, 8 2022. hardware user manual.

26. Virgile Robles, Nikolai Kosmatov, Virgile Prévosto, Louis Rilling, and Pascale
Le Gall. Methodology for specification and verification of high-level requirements
with metacsl. In 2021 IEEE/ACM 9th International Conference on Formal Methods
in Software Engineering (FormaliSE), pages 54–67. IEEE, 2021.

27. Dan Rosenberg. Qsee trustzone kernel integer over flow vulnerability. In Black Hat
conference, page 26, 2014.

28. Joanna Rutkowska and Rafal Wojtczuk. Qubes os architecture. Invisible Things
Lab Tech Rep, 54:65, 2010.

https://www.trustonic.com/technical-articles/benefits-trusted-user-interface/
https://www.trustonic.com/technical-articles/benefits-trusted-user-interface/
https://genode.org/documentation/articles/trustzone
https://genode.org/documentation/articles/trustzone


28 Security of graphic Chains

29. Keegan Ryan. Hardware-backed heist: Extracting ecdsa keys from qualcomm’s
trustzone. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 181–194, 2019.

30. Mickael Salaun. Intégration de l’utilisateur au contrôle d’accès: du processus
cloisonné à l’interface homme-machine de confiance. PhD thesis, Evry, Institut
national des télécommunications, 2018.

31. Adrian Tang, Simha Sethumadhavan, and Salvatore Stolfo. {CLKSCREW}: Ex-
posing the perils of {Security-Oblivious} energy management. In 26th USENIX
Security Symposium (USENIX Security 17), pages 1057–1074, 2017.

32. Natalia Vizintini and Aleksandr Grek. Secure virtual payments.


	Security of graphic Chains

