
From dusk till dawn
 Toward an effective trusted UI

SSTIC 2023 - Patrice HAMEAU, Philippe THIERRY, Florent VALETTE

About Trusted UI
2-

XX

Ab
ou

t t
ru

st
ed

 U
I

3-
XX

● TUI implementation problematic is a very old need
○ Requiring user presence
○ Enforcing only user-initiated operation
○ Requiring authentication mechanism

■ something you know (PIN, passphrase…)
■ something you own (tag…)
■ who you are (fingerprinting…)

○ Providing secured acknowledging of the
authentication sequence and secure operations

● A Trusted UI (Trusted User Interface aka. TUI) is
○ A trusted HW+SW path
○ Used in order to allow a secure environment (a

smartcard, an secure administration control system,
or any security-sensitive element) to communicate
with the user

○ Through or beside an unsecure path

● It shall keep confidentiality, integrity, disponibility and imputability of the data
it manipulates

Ab
ou

t t
ru

st
ed

 U
I

4-
XX

● TUI is required in various technical fields
for different degrees of trust:

○ Applications (payment, …) on mobile
devices,

○ Credentials for administrative tasks,
○ Access control on workstations…

● In consumer electronics, it is mostly designed
with a centralized execution model:

○ Single Application Processor (AP)
■ For both the normal/unsecured

and secure worlds
■ Using virtualization or TEE for

isolating both worlds
○ Sharing the peripherals

■ Peripherals dynamic switch (TEE)
■ Hardware virtualization

● In general TUI is hard to make portable on different hardware
○ Highly linked to specificities of used architecture technology

(Virtualization architecture, TrustZone…)
○ Highly coupled to the (un)secure interface sources
○ Sensitive to other peripherals in the system (side channels…)

Q
ub

es
O

S

C
lip

O
S

Mobiles (GlobalPlatform)

Ab
ou

t t
ru

st
ed

 U
I

5-
XX

● In consumer electronics, the TUI architectures are imposed by:
○ The limited choices among SoC manufacturers, which provide similar

architectures (mainly ARM(R) based)
○ And also mostly built in regards of consumer application needs, that is to:

■ Counter logical attacks: privilege escalation, data corruption, …
■ … but less to resist to semi-invasive and side-channels attacks!
■ Sharing power lines termination, clocks, memory hierarchy, and cpu

cores with the unsecure domain imposes indeed blockers in the design
of security architecture and thus on attacks path resistance.

● Some consortiums (e.g. GlobalPlatform) have tried to address the requirements
for providing trustful and high security TUI, resistant to different kind of attacks.

Ab
ou

t t
ru

st
ed

 U
I

6-
XX

● In consumer electronics, the TUI architectures are imposed by:
○ The limited choices among SoC manufacturers, which provide similar

architectures (mainly ARM(R) based)
○ And also mostly built in regards of consumer application needs, that is to:

■ Counter logical attacks: privilege escalation, data corruption, …
■ … but less to resist to semi-invasive and side-channels attacks!
■ Sharing power lines termination, clocks, memory hierarchy, and cpu

cores with the unsecure domain imposes indeed blockers in the design
of security architecture and thus on attacks path resistance.

● Some consortiums (e.g. GlobalPlatform) have tried to address the requirements
for providing trustful and high security TUI, resistant to different kind of attacks.

In embedded systems, why not just….
move the global input/output data and control

plane to an isolated trusted hardware component
dedicated only to this task?

Ab
ou

t t
ru

st
ed

 U
I

7-
XX

● In the embedded (and industrial) markets, more choices are possible in the
hardware and its architecture: considering a alternative and reusable TUI
security architecture concepts is a feasible option that may be considered

● In consumer electronics, the TUI architectures are imposed by:
○ The limited choices among SoC manufacturers, which provide similar

architectures (mainly ARM(R) based)
○ And also mostly built in regards of consumer application needs, that is to:

■ Counter logical attacks: privilege escalation, data corruption, …
■ … but less to resist to semi-invasive and side-channels attacks!
■ Sharing power lines termination, clocks, memory hierarchy, and cpu

cores with the unsecure domain imposes indeed blockers in the design
of security architecture and thus on attacks path resistance.

● Some consortiums (e.g. GlobalPlatform) have tried to address the requirements
for providing trustful and high security TUI, resistant to different kind of attacks.

Extracting the graphic chain
8-

XX

General principles

9-
XX

Ex
tr

ac
tin

g
th

e
gr

ap
hi

c
ch

ai
n

10
-X

X
Let’s make an arch & OS independent TUI mechanism

● Display interface technologies are based on standard protocols and encodings
○ SPI buses and MIPI-DSI bridges, pixel encoding formats (RGBA888, ARGB32…)
○ pixel format support negotiation already exist in standard protocols

● Display input sources (touchscreen, keyboards) are easy to intercept
○ standard ‘slow’ peripherals (I2C…) with simple protocol, interrupt based

Ex
tr

ac
tin

g
th

e
gr

ap
hi

c
ch

ai
n

11
-X

X
Let’s make an arch & OS independent TUI mechanism

● Display interface technologies are based on standard protocols and encodings
○ SPI buses and MIPI-DSI bridges, pixel encoding formats (RGBA888, ARGB32…)
○ pixel format support negotiation already exist in standard protocols

● Display input sources (touchscreen, keyboards) are easy to intercept
○ standard ‘slow’ peripherals (I2C…) with simple protocol, interrupt based

● For both of them:
○ para-virtualization through a deported (even SoC-external) graphical

controller with TUI capacity

ARM32/64, RISC-V…

secure [T]UI
a.k.a enclave

SE

TouchDisplay

Cortex-M, RV32 SecureElement

Ex
tr

ac
tin

g
th

e
gr

ap
hi

c
ch

ai
n

12
-X

X
Let’s dive in reality: the i.MX 8 case

● The enclave is hosted in the SoC, in an isolated companion core, but…

● A lot of indirect hardware elements
impacting the global security also
need to be virtualized

○ GPIO controller, I/O muxer, overall
power and clock management

○ companion-core dedicated memory
(ITCM/DTCM)

● All the SoC security components
need to be locked and controlled by
the enclave too

● The control interface between unsecure worlds (Android, TEE) and the enclave
○ is reduced to a 4-registers set

mailbox
○ has its access scheduled by

the TUI enclave
○ is a medium for a basic

protocol
○ use lightweight authenticated

session-based principle

● Enclave manipulates its own,
dedicated, framebuffers (FB) set
for secure UI

● Overall layouting (framebuffer mapping, device assignation, etc.) is
specified at build time

Ex
tr

ac
tin

g
th

e
gr

ap
hi

c
ch

ai
n

13
-X

X
Let’s dive in reality: the i.MX 8 case

Para-virtualizing the
Application Processor OSes

14
-X

X

Pa
ra

-v
irt

ua
liz

in
g

th
e

AP
 O

Se
s

15
-X

X
Para-virtualizing the output: Linux DRM to remote mailboxing

● Linux kernel has defined a standard graphical stack denoted DRM

○ all graphical drivers should declare themselves against the DRM framework
○ this allows a unified userspace interface to GPU rendering libraries

16
-X

X
Para-virtualizing the output: Linux DRM to remote mailboxing

● Linux kernel has defined a standard graphical stack denoted DRM

○ all graphical drivers should declare themselves against the DRM framework
○ this allows a unified userspace interface to GPU rendering libraries

drm_vcrtc messaging-unit TUI enclave

Pa
ra

-v
irt

ua
liz

in
g

th
e

AP
 O

Se
s

17
-X

X
Para-virtualizing the output: Linux DRM to remote mailboxing

● Linux kernel has defined a standard graphical stack denoted DRM

○ all graphical drivers should declare themselves against the DRM framework
○ this allows a unified userspace interface to GPU rendering libraries

drm_vcrtc messaging-unit TUI enclave

Para-virtualizing the input: standard Linux input device

● Linux input device framework is kept untouched. Easier to virtualize as only touch
device interrupts need to be emulated through the messaging unit

● Any hotplugged input device (e.g. USB keyboard) is then only AP-dedicated input,
unusable by the TUI

Pa
ra

-v
irt

ua
liz

in
g

th
e

AP
 O

Se
s

18
-X

X
Switching to TUI mode : TUI session handling

● The TUI content being under the control of the Secure Element (SE), it is the sole
master of the TUI session startup and releasing, when :
○ User authentication is requested
○ Specific user interactions with confidentiality/integrity/authenticity is requested
○ SE-specific UI control interface is required

● To enforce TUI contents isolation and protection, during the TUI session:
○ The enclave ignores any graphical request from other sources
○ The enclave emulates hardware acknowledgement toward unsecure sources as if the

requested content have been displayed, even if discarded
○ The touch display events are directed to the SE (SoC has no access to them)

Pa
ra

-v
irt

ua
liz

in
g

th
e

AP
 O

Se
s

Securing the TUI firmware

19
-X

X

Se
cu

rin
g

th
e

TU
I f

irm
w

ar
e

20
-X

X
Booting and protecting the TUI software

● The enclave behaves as a transparent graphic proxy, and must be started first

● Its boot sequence is controlled by the I.MX8 secureboot bootrom + SPL
(Secondary Platform Loader), and:
○ is started before ATF, TEE, Android, etc. to guarantee very minimal TCB
○ is ready in milliseconds, even in a MCU, due to its very small footprint

(~15KLOC)
○ on I.MX 8 its integrity is controlled by the HAB secure boot process, using the

Boot-ROM startup check

Se
cu

rin
g

th
e

TU
I f

irm
w

ar
e

21
-X

X
Booting and protecting the TUI software

● The enclave immediately performs the following action when starting:

○ security domain controller, separating proxy domain from main compute node
(and associated peripherals) domain

○ takes full control on the IOMUX, power and clock controllers (CCM, mediablock
controllers, etc.) to hold an lock its own lines

○ initializes the graphical subsystem
○ initializes communication channel with the eSE
○ release hardware semaphore to acknowledge SPL for continuing AP boot

sequence
○ … and wait for events in proxy mode

Demo time!
22

-X
X

23
-X

X

Trusted User Interface PoC demo - a video CLIP

Demo done on a Ledger development box (NXP iMX8; 720p display; OS Android; TUI on Cortex-M7 co-processor)

Frame Buffer generated by Android
(captured with ADB)

Effective screen display managed by Enclave
coprocessor (CM7), composed of:
● Frame Buffer generated by Android (as per

left picture)
● Security bar (red) added by CM7

Effective screen display once in TUI, composed
of:
● TUI rendered by CM7
● Security bar (green) added by CM7

In TUI mode, no change in frame Buffer generated
by Android, and Android is not aware that it is not
displayed on the screen
(captured with ADB)

Display generated by Android Effective display on screen Display generated by Android Effective display on screen

Normal Android mode (non TUI) TUI mode (secure)

What’s next?
24

-X
X

W
ha

t’s
 n

ex
t

25
-X

X
What’s next…

● Our Proof Of Concept includes
○ Linux kernel paravirtualized drivers fully developed, integrated as a DRM

device, and operational in Android system
○ An enclave firmware (running on Cortex-M7) built from scratch with security

and portability in mind

● And now what?
○ Continue to improve the enclave firmware implementation to be resilient and

as much portable as possible:
■ Minimize dependency to the main AP architecture (ARM64, RISC-V…)

and OS running on it (GNU/Linux, Android…)
■ Ease portability from ARMv7 to other architecture (e.g. RISC-V)
■ Increase as much as possible build-time (static) resources allocation

and peripheral configurations (locking) versus runtime (dynamic) ones
○ Support architecture evolution to an external enclave coprocessor (e.g. a

Secure Element companion outside of the SoC) that acts as a proxy (bridge)
between the SoC and the display / touch

○ Open-source the design and firmware and maintain it as an open-source
project (part of Ledger open-source plan)

Thank you !

26
-X

X

Extra slides

Console boot extract

27
-X

X

Bo
ot

 s
eq

ue
nc

e
ex

tr
ac

t
28

-X
X

[0.000000][T0] Reserved memory: created DMA memory pool at 0x0000000050000000, size 4 MiB
[0.000000][T0] OF: reserved mem: initialized node framebuffer@50000000, compatible id
shared-dma-pool
[0.000000][T0] Reserved memory: created DMA memory pool at 0x0000000050400000, size 4 MiB
[0.000000][T0] OF: reserved mem: initialized node framebuffer@50400000, compatible id
shared-dma-pool
[0.000000][T0] Reserved memory: created DMA memory pool at 0x0000000050800000, size 4 MiB
[0.000000][T0] OF: reserved mem: initialized node framebuffer@50800000, compatible id
shared-dma-pool
[...]
[3.872296][T1] init: Loading module /lib/modules/libmu.ko with args ""
[3.880790][T1] libmu initialized with success.
[3.885930][T1] init: Loaded kernel module /lib/modules/libmu.ko
[3.892385][T1] init: Loading module /lib/modules/cm7drm.ko with args ""
[3.901070][T1] cm7-drm cm7-drm: probe begin
[3.905868][T1] cm7-drm-framebuffer-0: assigned reserved memory node framebuffer@50000000
[3.914537][T1] cm7-drm-framebuffer-1: assigned reserved memory node framebuffer@50400000
[3.923184][T1] cm7-drm-framebuffer-2: assigned reserved memory node framebuffer@50800000
[3.932536][T1] cm7-drm cm7-drm: cm7-plane: init
[3.937559][T1] cm7-drm cm7-drm: init begin
[3.942299][T1] [drm] Initialized cm7-drm 1.0.0 20220916 for cm7-drm on minor 0
[3.950107][T1] init: Loaded kernel module /lib/modules/cm7drm.ko
[3.956667][T1] init: Loading module /lib/modules/libmu-core.ko with args ""
[3.978321][T1] libmu-core initialized with success.
[3.978328][C0] libmu-core: ping received, ree is taking ownership of mu endpoints
[3.983654][C0] libmu-core: ping received, ree is taking ownership of mu endpoints
[3.983744][T1] libmu-core: libmu-core driver and sysctl registered.
[4.006284][T1] init: Loaded kernel module /lib/modules/libmu-core.ko

&resmem {
 nwd_framebuffer_1: framebuffer@50000000 {
 compatible = "shared-dma-pool";
 reg = <0 0x50000000 0 0x400000>;
 no-map;
 };

 nwd_framebuffer_2: framebuffer@50400000 {
 compatible = "shared-dma-pool";
 reg = <0 0x50400000 0 0x400000>;
 no-map;
 };

 nwd_framebuffer_3: framebuffer@50800000 {
 compatible = "shared-dma-pool";
 reg = <0 0x50800000 0 0x400000>;
 no-map;
 };
};

&mu {
 compatible = "ledger,libmu";

 memory-region =
 <&nwd_framebuffer_1>,
 <&nwd_framebuffer_2>,
 <&nwd_framebuffer_3>;

 memory-region-names = "framebuffer1",
 "framebuffer2", "framebuffer3";

 status = "okay";
};

‘dtsi’ file

Build-time set memory layout: simplify the security domain configuration

boot console

AP / Enclave library providing hardware isolated communication setup

Frame buffer statically allocated at absolute
address.

