From dusk till dawn Toward an effective trusted UI

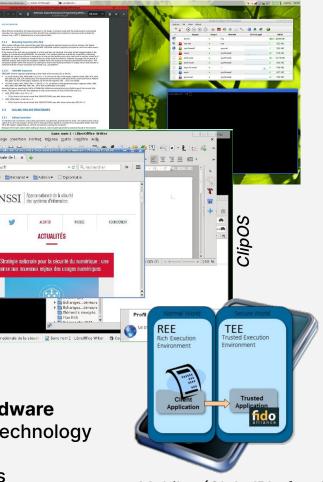
SSTIC 2023 - Patrice HAMEAU, Philippe THIERRY, Florent VALETTE

About Trusted Ul

- A **Trusted UI** (Trusted User Interface aka. <u>TUI</u>) is
 - A trusted HW+SW path
 - Used in order to allow a secure environment (a smartcard, an secure administration control system, or any security-sensitive element) to communicate with the user
 - Through or beside an unsecure path

 It shall keep confidentiality, integrity, disponibility and imputability of the data it manipulates

- TUI implementation problematic is a very old need
 - Requiring user presence
 - Enforcing only user-initiated operation
 - Requiring authentication mechanism
 - something you know (PIN, passphrase...)
 - something you own (tag...)
 - who you are (fingerprinting...)
 - Providing **secured acknowledging** of the authentication sequence and secure operations


3-XX

- TUI is required in various technical fields for different degrees of trust:
 - Applications (payment, ...) on mobile devices,
 - Credentials for administrative tasks,
 - Access control on workstations...
- In consumer electronics, it is mostly designed with a centralized execution model:
 - **Single** Application Processor (AP)
 - For both the normal/unsecured and secure worlds
 - Using virtualization or TEE for isolating both worlds
 - **Sharing** the peripherals
 - Peripherals dynamic switch (TEE)
 - Hardware virtualization
- In general TUI is hard to make **portable on different hardware**
 - Highly linked to specificities of used architecture technology (Virtualization architecture, TrustZone...)

S

QubesO

- Highly coupled to the (un)secure interface sources
- Sensitive to other peripherals in the system (side channels...)

Mobiles (GlobalPlatform)

- Some consortiums (e.g. GlobalPlatform) have tried to address the requirements for providing trustful and high security TUI, resistant to different kind of attacks.
- In consumer electronics, the TUI architectures are imposed by:
 - The <u>limited choices among SoC</u> manufacturers, which provide similar architectures (mainly ARM^(R) based)
 - And also mostly built in regards of <u>consumer application needs</u>, that is to:
 - **Counter logical attacks**: privilege escalation, data corruption, ...
 - ... but less to resist to semi-invasive and side-channels attacks!
 - Sharing power lines termination, clocks, memory hierarchy, and cpu cores with the unsecure domain imposes indeed **blockers** in the design of security architecture and thus on attacks path resistance.

- Some consortiums (e.g. GlobalPlatform) have tried to address the requirements for providing trustful and high security TUI, resistant to different kind of attacks.
- In consumer electronics, the TUI architectures are imposed by:
 - The <u>limited choices among SoC</u> manufacturers, which provide similar architectures (mainly ARM^(R) based)
 - And also mostly built in regards of <u>consumer application needs</u>, that is to:
 - Counter logical attacks: privilege escalation, data corruption, ...
 - ... but less to resist to semi-invasive and side-channels attacks!
 - Sharing power lines termination, clocks, memory hierarchy, and cpu cores with the unsecure domain imposes indeed **blockers** in the design of security architecture and thus on attacks path resistance.

- Some consortiums (e.g. GlobalPlatform) have tried to address the requirements for providing trustful and high security TUI, resistant to different kind of attacks.
- In consumer electronics, the TUI architectures are imposed by:
 - The <u>limited choices among SoC</u> manufacturers, which provide similar architectures (mainly ARM^(R) based)
 - And also mostly built in regards of <u>consumer application needs</u>, that is to:
 - **Counter logical attacks**: privilege escalation, data corruption, ...
 - ... but less to resist to semi-invasive and side-channels attacks!
 - Sharing power lines termination, clocks, memory hierarchy, and cpu cores with the unsecure domain imposes indeed **blockers** in the design of security architecture and thus on attacks path resistance.
- In the embedded (and industrial) markets, more choices are possible in the hardware and its architecture: considering a <u>alternative and reusable TUI</u> <u>security architecture</u> concepts is a feasible option that may be considered

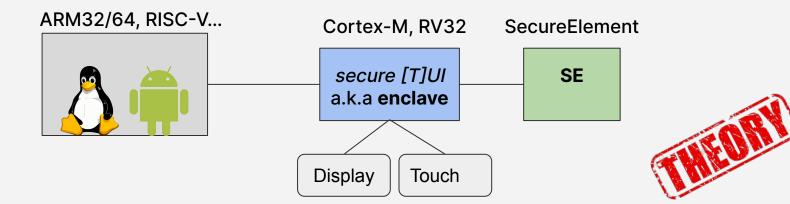
In embedded systems, why not just.... move the global input/output data and control plane to an isolated trusted hardware component dedicated only to this task?

7-XX

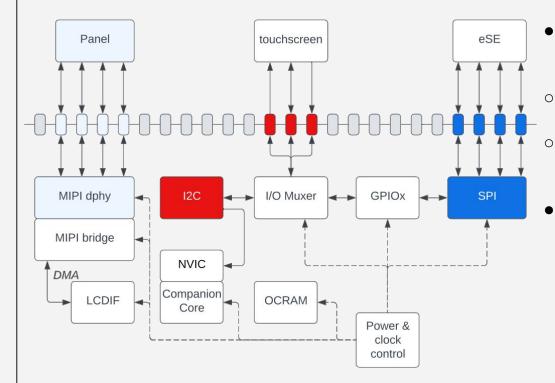
[_]

Extracting the graphic chain

General principles


Let's make an arch & OS independent TUI mechanism

- Display interface technologies are based on standard protocols and encodings
 - SPI buses and MIPI-DSI bridges, pixel encoding formats (RGBA888, ARGB32...)
 - pixel format support negotiation already exist in standard protocols
- Display input sources (touchscreen, keyboards) are easy to intercept
 - standard 'slow' peripherals (I2C...) with simple protocol, interrupt based


Let's make an arch & OS independent TUI mechanism

- Display interface technologies are based on standard protocols and encodings
 - SPI buses and MIPI-DSI bridges, pixel encoding formats (RGBA888, ARGB32...)
 - pixel format support negotiation already exist in standard protocols
- Display input sources (touchscreen, keyboards) are easy to intercept
 - standard 'slow' peripherals (I2C...) with simple protocol, interrupt based
- For both of them:
 - para-virtualization through a deported (even SoC-external) graphical controller with TUI capacity

Let's dive in reality: the i.MX 8 case

• The **enclave** is hosted in the SoC, in an isolated *companion core*, but...

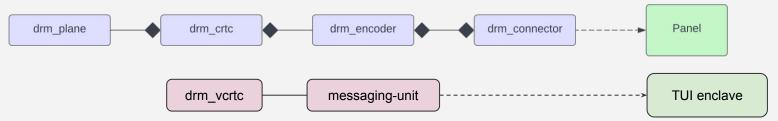


- A lot of indirect hardware elements impacting the global security also need to be virtualized
- GPIO controller, I/O muxer, overall power and clock management
- companion-core dedicated memory (ITCM/DTCM)
- All the SoC security components need to be locked and controlled by the enclave too

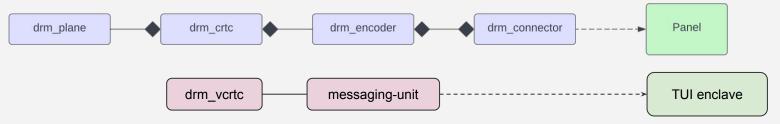
Let's dive in reality: the i.MX 8 case

- The control interface between unsecure worlds (Android, TEE) and the enclave
 - is reduced to a 4-registers set mailbox
 - has its access scheduled by the TUI enclave
 - is a medium for a basic protocol
 - use lightweight authenticated session-based principle
- Enclave manipulates its own, dedicated, framebuffers (FB) set for secure UI
- Overall layouting (framebuffer mapping, device assignation, etc.) is specified at build time

Para-virtualizing the Application Processor OSes


Para-virtualizing the output: Linux DRM to remote mailboxing

- Linux kernel has defined a standard graphical stack denoted DRM
 - all graphical drivers should declare themselves against the DRM framework
 - this allows a unified userspace interface to GPU rendering libraries


Para-virtualizing the output: Linux DRM to remote mailboxing

- Linux kernel has defined a standard graphical stack denoted DRM
 - all graphical drivers should declare themselves against the DRM framework
 - this allows a unified userspace interface to GPU rendering libraries

Para-virtualizing the output: Linux DRM to remote mailboxing

- Linux kernel has defined a standard graphical stack denoted DRM
 - all graphical drivers should declare themselves against the DRM framework
 - this allows a unified userspace interface to GPU rendering libraries

Para-virtualizing the input: standard Linux input device

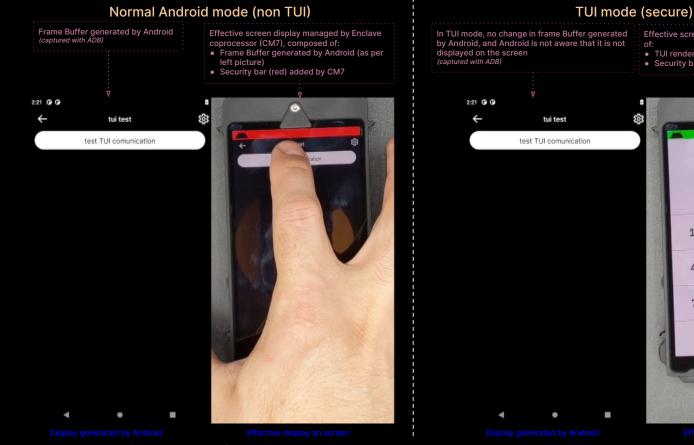
- Linux input device framework is kept untouched. Easier to virtualize as only touch device interrupts need to be emulated through the messaging unit
- Any hotplugged input device (e.g. USB keyboard) is then only AP-dedicated input, unusable by the TUI

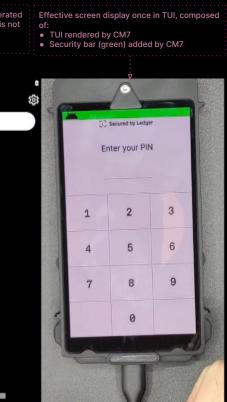
Switching to TUI mode : TUI session handling

- The TUI content being under the control of the Secure Element (SE), it is the sole master of the TUI session startup and releasing, when :
 - User authentication is requested
 - Specific user interactions with confidentiality/integrity/authenticity is requested
 - SE-specific UI control interface is required
- To enforce TUI contents isolation and protection, during the TUI session:
 - The enclave **ignores any graphical request** from other sources
 - The enclave **emulates hardware acknowledgement** toward unsecure sources as if the requested content have been displayed, even if discarded
 - The touch display events are directed to the SE (SoC has no access to them)

Securing the TUI firmware

Booting and protecting the TUI software


- The enclave behaves as a transparent graphic proxy, and must be started first
- Its boot sequence is controlled by the I.MX8 secureboot bootrom + SPL (Secondary Platform Loader), and:
 - is started **before** ATF, TEE, Android, etc. to guarantee very minimal TCB
 - is ready in milliseconds, even in a MCU, due to its very small footprint (~15KLOC)
 - on I.MX 8 its integrity is controlled by the HAB secure boot process, using the Boot-ROM startup check


Booting and protecting the TUI software

- The enclave immediately performs the following action when starting:
 - security domain controller, separating proxy domain from main compute node (and associated peripherals) domain
 - takes full control on the IOMUX, power and clock controllers (CCM, mediablock controllers, etc.) to hold an lock its own lines
 - initializes the graphical subsystem
 - initializes communication channel with the eSE
 - release hardware semaphore to acknowledge SPL for continuing AP boot sequence
 - ... and wait for events in proxy mode

Demo time!

Trusted User Interface PoC demo - a video CLIP

Effective display on scree

Demo done on a Ledger development box (NXP iMX8; 720p display; OS Android; TUI on Cortex-M7 co-processor)

What's next?

What's next...

• Our Proof Of Concept includes

- <u>Linux kernel paravirtualized drivers</u> fully developed, integrated as a DRM device, and operational in Android system
- <u>An enclave firmware</u> (running on Cortex-M7) built from scratch with security and portability in mind

• And now what?

- Continue to improve the enclave firmware implementation to be resilient and as much portable as possible:
 - Minimize dependency to the main AP architecture (ARM64, RISC-V...) and OS running on it (GNU/Linux, Android...)
 - Ease portability from ARMv7 to other architecture (e.g. RISC-V)
 - Increase as much as possible build-time (static) resources allocation and peripheral configurations (locking) versus runtime (dynamic) ones
- Support architecture evolution to an external enclave coprocessor (e.g. a Secure Element companion outside of the SoC) that acts as a proxy (bridge) between the SoC and the display / touch
- Open-source the design and firmware and maintain it as an open-source project (part of Ledger open-source plan)

Thank you !

Extra slides

Console boot extract

Build-time set memory layout: simplify the security domain configuration

	[0.000000][[0.000000][shared-dma-pool [0.000000][T0] Reserved memory: created DMA memory pool at 0x0000000000000000, size 4 MiB T0] OF: reserved mem: initialized node framebuffer@50000000, compatible id T0] Reserved memory: created DMA memory pool at 0x0000000050400000, size 4 MiB	Frame buffer statically allocated at absolute address.
	[0.000000][shared-dma-pool [0.000000][[0.000000][shared-dma-pool	T0] OF: reserved mem: initialized node framebuffer@50400000, compatible id T0] Reserved memory: created DMA memory pool at 0x000000050800000, size 4 MiB T0] OF: reserved mem: initialized node framebuffer@50800000, compatible id	'dtsi' file
	[] [3.872296] [[3.880790] [[3.885930] [[3.901070] [[3.905868] [[3.914537] [[3.914537] [[3.923184] [[3.937559] [[3.937559] [[3.942299] [[3.956667] [[3.978321] [[3.978328] [[3.983654] [[3.983744] [[4.006284] [<pre>T1] init: Loading module /lib/modules/libmu.ko with args "" T1] libmu initialized with success. T1] init: Loading module /lib/modules/libmu.ko T1] init: Loading module /lib/modules/cm7drm.ko with args "" T1] cm7-drm cm7-drm: probe begin T1] cm7-drm-framebuffer-0: assigned reserved memory node framebuffer@50000000 T1] cm7-drm-framebuffer-1: assigned reserved memory node framebuffer@50800000 T1] cm7-drm-framebuffer-2: assigned reserved memory node framebuffer@50800000 T1] cm7-drm cm7-drm: cm7-plane: init T1] cm7-drm cm7-drm: init begin T1] [drm] Initialized cm7-drm 1.0.0 20220916 for cm7-drm on minor 0 T1] init: Loading module /lib/modules/libmu-core.ko with args "" T1] libmu-core: ping received, ree is taking ownership of mu endpoints C0 libmu-core: libmu-core driver and sysctl registered. T1] init: Loaded kernel module /lib/modules/libmu-core.ko</pre>	<pre>\$resmem { nwd_framebuffer_1: framebuffer@50000000 { compatible = "shared-dma-pool"; reg = <0 0x50000000 0 0x400000>; no-map; }; nwd_framebuffer_2: framebuffer@50400000 { compatible = "shared-dma-pool"; reg = <0 0x50400000 0 0x400000>; no-map; }; nwd_framebuffer_3: framebuffer@50800000 { compatible = "shared-dma-pool"; reg = <0 0x50800000 0 0x400000>; no-map; }; nwd_framebuffer_3: framebuffer@50800000 { compatible = "shared-dma-pool"; reg = <0 0x50800000 0 0x400000>; no-map; }; }; fmu { compatible = "ledger,libmu"; } }</pre>
-		boot console	<pre>memcry-region = <&nwd_framebuffer_1>,</pre>
		AP / Enclave library providing hardware isolated communication setup	<pre>memory-region-names = "framebuffer1", "framebuffer2", "framebuffer3"; status = "okay"; };</pre>