
1

Symless
An IDA reverse assistant

R. Midget – B. Verstraeten
June 9th 2023

2

About us

▌B. Verstraeten

• Reverser @ Thalium

▌Royal Midget

• Ex Reverser @ Thalium

• Now Reverser @ Synacktiv

3

Summary

▌Introduction to Symless

▌Application on a SSTIC challenge

▌Symless under the hood

▌Live Demo on a Real-Life example

4

Symless - Introduction

5

Symless – Introduction

▌What is Symless ?

• A Python IDA Pro Plugin

• Symbol-less

▌How ?

• Automatic structure buildings

• Propagating type information in the database to generate xrefs

• Improving human-readablity of decompiler output

▌What is its purpose ?

• Make the reverser’s life easier by automating some of their tasks

6

Example on SSTIC 2022
binary challenge

7

SSTIC 2022 Challenge example

▌Binary is

• ELF x64 with symbols (functions names)

• Simple FTP Server implemented in C

▌Vulnerability research

• Looking at dangerous API like read

 Is there an OOB ?

▌Illustrate symless features while checking this potential vulnerability

8

How to check if there is a vulnerability ?

▌nb_bytes_read = Read(fd_src, destination_buffer, nb_max_bytes_to_read)

▌How to know if there is an OOB Write ?

▌What is the consequence of the OOB ?

▌Does the attacker control these data ?

Fd_src Dest_buf Nb_max_bytes

Write byte 0 at max index
1024 of (arg1 + 24)

9

How to check if there is a vulnerability without Symless ?

▌Find the constructor of object arg1

• How ? Follow backward from caller to caller until finding the origin

• Then ? Create the structure and fields associated

▌Find all the methods that use the object arg1

• How ? Follow backward and forward the propagation of the object in callers and callees

• Then ? Understand usage of all of the fields

10

Symless application

11

Feature : Overall enhancement of decompiler output

Comparison before / after applying Symless on the database

Before Symless

12

Feature : Overall enhancement of decompiler output

Comparison before / after applying Symless on the database

After Symless

13

Feature : Automatic structures building

▌Structure FTPServer

• 30 fields

• 161 xrefs created

▌Minimum 200 mouse
clicks saved

• Eco-friendly

14

How to know if there is an OOB Write ?

Write up to 0x400 bytes

Write byte 0 at index
Between 0 and 1024
of field_018

15

Feature : Automatic Structure buildings

▌Does size(field_018) greater than 1025/0x401 ?

▌Write Null-Byte Off By One in field_0418

▌Size is 1024/0x400

16

Feature : Xrefs on structures fields : field_0418

▌Flag indicating CERT or USER type

• Possible to confuse CERT to USER by nullifying field_0000418

17

Are data controlled by an attacker ?

18

Feature : Xrefs on structures fields

19

How Symless works ?

20

Symless data flow

▌Symless propagates a structure from disassembly

Structure pointer

▌Gather accessed fields

▌Recognize virtual table loading

Propagation

21

Data flow entries

▌Where to apply this propagation ?

• Before structures initialisation

▌Symless uses two types of entry points

• Memory allocation for structures

• Constructor of C++ classes (from virtual tables)

Entry

22

Conflicts resolution

▌Conflicts have to be resolved before getting decent results

• Structure inner conflicts

• Conflicts between structures

• Duplicates need to be merged

▌Conflicts resolution is the most complicated part of the process

• E.g., HexRaysPyTools asks to the reverser

▌Symless handles them automatically

• Using multiple heuristics

• No user interaction is required

23

The Symless Experience

▌Symless aims to build a complete backbone for each structure

• By identifying all its fields

• By linking classes and their virtual tables

▌Finding relevant names & types is left to the user

• This is done along the reversing process

▌Symless can use some symbols to rename the structures

24

The Symless Experience - simplified

25

Symless modes

▌Pre-Analysis mode

▌Interactive plugin mode

26

Live demo

27

Conclusion

▌Symless features

• Automatic structures building

• Xrefs on structures fields

• Overall enhancement of decompiler output

• And others..

▌Support

• x64 & x86 binaries

• IDA 7 Pro +

▌Any questions ?

https://github.com/thalium/symless

https://thalium.re/

https://thalium.re/

