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About us

▌B. Verstraeten

• Reverser @ Thalium

▌Royal Midget

• Ex Reverser @ Thalium

• Now Reverser @ Synacktiv
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Summary

▌Introduction to Symless

▌Application on a SSTIC challenge

▌Symless under the hood

▌Live Demo on a Real-Life example
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Symless - Introduction
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Symless – Introduction

▌What is Symless ?

• A Python IDA Pro Plugin

• Symbol-less

▌How ?

• Automatic structure buildings

• Propagating type information in the database to generate xrefs

• Improving human-readablity of decompiler output

▌What is its purpose ?

• Make the reverser’s life easier by automating some of their tasks
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Example on SSTIC 2022 
binary challenge
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SSTIC 2022 Challenge example

▌Binary is

• ELF x64 with symbols (functions names)

• Simple FTP Server implemented in C

▌Vulnerability research

• Looking at dangerous API like read

 Is there an OOB ?

▌Illustrate symless features while checking this potential vulnerability
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How to check if there is a vulnerability ?

▌nb_bytes_read = Read(fd_src, destination_buffer,  nb_max_bytes_to_read)

▌How to know if there is an OOB Write ?

▌What is the consequence of the OOB ?

▌Does the attacker control these data ?

Fd_src Dest_buf Nb_max_bytes

Write byte 0 at max index 
1024 of (arg1 + 24)
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How to check if there is a vulnerability without Symless ?

▌Find the constructor of object arg1

• How ? Follow backward from caller to caller until finding the origin

• Then ? Create the structure and fields associated

▌Find all the methods that use the object arg1

• How ? Follow backward and forward the propagation of the object in callers and callees

• Then ? Understand usage of all of the fields
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Symless application
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Feature : Overall enhancement of decompiler output

Comparison before / after applying Symless on the database

Before Symless
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Feature : Overall enhancement of decompiler output

Comparison before / after applying Symless on the database

After Symless
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Feature :  Automatic structures building

▌Structure FTPServer

• 30 fields

• 161 xrefs created

▌Minimum 200 mouse 
clicks saved

• Eco-friendly
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How to know if there is an OOB Write ?

Write up to 0x400 bytes

Write byte 0 at index 
Between 0 and 1024 
of field_018
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Feature : Automatic Structure buildings

▌Does size(field_018) greater than 1025/0x401 ?

▌Write Null-Byte Off By One in field_0418

▌Size is 1024/0x400
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Feature : Xrefs on structures fields : field_0418

▌Flag indicating CERT or USER type

• Possible to confuse CERT to USER by nullifying field_0000418
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Are data controlled by an attacker ?
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Feature : Xrefs on structures fields
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How Symless works ?
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Symless data flow

▌Symless propagates a structure from disassembly

Structure pointer

▌Gather accessed fields

▌Recognize virtual table loading

Propagation
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Data flow entries

▌Where to apply this propagation ?

• Before structures initialisation

▌Symless uses two types of entry points

• Memory allocation for structures

• Constructor of C++ classes (from virtual tables)

Entry
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Conflicts resolution

▌Conflicts have to be resolved before getting decent results

• Structure inner conflicts

• Conflicts between structures

• Duplicates need to be merged

▌Conflicts resolution is the most complicated part of the process

• E.g., HexRaysPyTools asks to the reverser

▌Symless handles them automatically

• Using multiple heuristics

• No user interaction is required
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The Symless Experience

▌Symless aims to build a complete backbone for each structure

• By identifying all its fields

• By linking classes and their virtual tables

▌Finding relevant names & types is left to the user

• This is done along the reversing process

▌Symless can use some symbols to rename the structures
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The Symless Experience - simplified
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Symless modes

▌Pre-Analysis mode

▌Interactive plugin mode
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Live demo
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Conclusion

▌Symless features

• Automatic structures building

• Xrefs on structures fields

• Overall enhancement of decompiler output

• And others..

▌Support

• x64 & x86 binaries

• IDA 7 Pro +

▌Any questions ?

https://github.com/thalium/symless

https://thalium.re/

https://thalium.re/

