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Abstract. Last year, we saw a resurgence of vulnerabilities impacting
the logo parsers of various boot chains, leading to complete secure boot
bypasses. While these researches, such as LogoFail [7], impacted mainly
desktop environments, mobile platforms are not immune to this type of
issue. During our past research analyzing the Android Data Encryption
Scheme, we dived into the boot chain of Samsung low-end mobile devices,
which are based on MediaTek System-on-Chips. Some parts of the imple-
mentation, including the JPEG logo parsing of the bootloader, quickly
raised our interest as they had a good potential for bugs.

In this paper, we present a small bug chain that can be used by an
attacker with physical access to the device to bypass the secure boot,
execute code on the chip, reach persistency, and ultimately leak the secret
keys protected by the hardware-backed keystore.

This article brings together two important concepts of modern mobile
architecture: the secure boot and the Trusted Execution Environment. It
gives a comprehensive view of how these features work and how they can
be targeted by security researchers, focusing on the offensive approach.

1 Introduction

During our previous researches, we have studied the boot chain of
some Samsung devices based on MediaTek system on chips. Our objective
was to exploit a known boot ROM vulnerability to bypass the secure boot
and ultimately retrieve the required ingredients to bruteforce the user
credentials [10]. Once we became familiar with this boot chain, we decided
to take a closer look at a component coming later in the process: the Little
Kernel bootloader (LK, also called BL3-3).

We begin our bug-hunting journey in LK from a JPEG parser that
was introduced by the vendor. Then we show how, thanks to reverse
engineering, we discovered a vulnerability leading to code execution in the
context of the bootloader, and how it can be used to bypass the secure
boot and take full control over the Android system.
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In order to trigger this vulnerability, we need a way to flash our JPEGs
on the flash memory of the device. We will dive into the implementation
of Odin, the Samsung recovery protocol and present a second vulnerability
we discovered, allowing us to write anything on the flash memory without
authentication.

In the last part, we focus on the ARM Trusted Firmware (also known
as the Secure Monitor), which runs with the highest privileges on the
device. We present two critical vulnerabilities we discovered and show how
they allowed us to break the last security barrier of this device to leak the
secrets hidden in the Secure World.

1.1 The MediaTek boot chain

In MediaTek boot chain, Little Kernel is the third bootloader, coming
after the boot ROM and the preloader (as shown in Figure 1). It is
executed in the Normal World with the Exception Level EL1 (more details
about the Exception Levels can be found in section 3.1), which is the same
as the Android kernel. This means that a vulnerability in this bootloader
may lead to full control of the Normal World and so of the Android system.
However, this can’t impact the Secure World and its secrets which is why
we targeted this second component: the ARM Trusted Firmware.

Fig. 1. The MediaTek Secure Boot
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2 Little Kernel

Little Kernel 1 is an open-source operating system commonly used
in the Android world, which primarily serves as a bootloader. It usually
implements the fastboot protocol, which is used to perform diagnostic and
recovery operations over USB (such as reflashing the partitions). More
importantly, LK also implements Android Verified Boot [9], which is part
of the secure boot and verifies Android-related partitions.

The implementation we found in the devices we studied differs from
the open source one. Indeed, we noticed that a few modifications were
introduced by both MediaTek and by Samsung. For instance, Samsung
added its own diagnostic and recovery protocol: Odin, in place of fastboot.
Another change introduced by Samsung is the ability to show pictures on
the screen representing logos and error messages in JPEG format.

Fig. 2. Example of picture present in the up_param partition

It is also interesting to note the absence of mitigations in this boot-
loader: there is no ASLR, no bound checks in the heap and the heap is
executable. . .

2.1 JPEG Loading During the Boot Process

These JPEG files are present in a partition called up_param, which
consists of a tar file including the various images to be rendered on the
screen depending on the boot state (e.g., secure boot verification failed)
and the bootloader mode (e.g., locked/unlocked, Odin mode).

1 https://github.com/littlekernel/lk

https://github.com/littlekernel/lk
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Even though this partition contains a signature, it is not verified at
boot time. Which means that one with the ability to write something
on the flash storage, through a vulnerability in the recovery protocols or
with enough privileges on the Android system, can replace these pictures.
From an attacker’s point of view, this makes an interesting attack surface
as it is possible to target the tar and the JPEG parsers for vulnerability
research.

The Heap Overflow We started our analysis by reverse engineering the
code responsible for providing the JPEG files to the parser after reading
them from the flash memory. During this step, we discovered the first
heap overflow vulnerability.

Listing 1: Code snippet of the function drawimg extracted from
Ghidra

1 _JPEG_BUF = alloc(0x100000);

2 if (_JPEG_BUF == 0) {

3 log("%s: img buf alloc fail \n" ,"drawimg" );

4 uVar2 = 0xffffffff;

5 }

6 else {

7 memset(_JPEG_BUF,0,0x100000);

8 iVar1 = read_jpeg_file(file_name,_JPEG_BUF,0);

9 if (iVar1 == 0) {

10 log("%s: read %s from up_param as 0

size \n" ,"drawimg" ,file_name);→֒

11 uVar2 = 0xffffffff;

12 }

13 // ...

14

15 pimage(*(undefined4 *)(&DAT_4c5107fc + param_1 * 0x3c),

16 *(undefined4 *)(&DAT_4c510800 + param_1 *

0x3c),0x2d0,0x640,1,_JPEG_BUF,iVar1);→֒

Here, the buffer in which the JPEGs are copied is dynamically allocated
with a fixed size of 0x100000 and is initialized to 0 with memset. It is
then passed in argument to the function we called read_jpeg_file. This
function takes the name of the JPEG to read as first argument, then reads
it and stores its content into the buffer, previously allocated and provided
as argument. The last argument corresponds to the maximum number
of bytes to be read. However, the function behaves in a rather surprising
way when this argument is set to 0 (which is the case here): no checks
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are performed on the size of the JPEG file. As a result, it is possible to
overflow the JPEG buffer by placing a file bigger than 0x100000 bytes.

What can be done using this overflow depends on the allocator and on
the state of the heap. The dynamic allocation algorithm used here seems
to be an old version of miniheap,2 that is relying on a doubly linked list.

Listing 2: Structure of the miniheap doubly linked list of free chunks

1 struct free_heap_chunk {

2 struct list_node *prev;

3 struct list_node *next;

4 size_t len;

5 }

When a chunk is allocated, the free chunk is turned into an allocated
one with a header (defined in Listing 3) followed by the data.

Listing 3: Structure of the miniheap allocated chunk header

1 struct alloc_struct_header {

2 unsigned int magic; // Always 0x48454150

3 void *ptr; // Points to the header

4 size_t size; // Size of the data + header

5 }

The memory chunks are following each other, and an overflow hap-
pening in one of them may overwrite the metadata of the next chunk in
memory (either free or allocated). What we can do from there depends
on the state of the heap when the overflow happens. For example, if the
chunk that overflows is followed by another one that contains function
pointers, it is possible to simply overwrite these pointers to achieve code
execution when they are used. However, in our case, it seems that nothing
particularly interesting is coming after our JPEG chunk.

We found a method to take advantage of the next allocations that
are performed in the execution of the JPEG parser. Indeed, several other
structures are going to be allocated as part of the parser implementation.
It is possible to use this overflow to overwrite the prev and next pointers
of the free chunk coming just after our JPEG data. Whenever this free
chunk is being allocated, the allocation function removes the free chunk
from the free chunk list by placing the address of the prev chunk in the

2 https://github.com/littlekernel/lk/blob/master/lib/heap/miniheap/

miniheap.c

https://github.com/littlekernel/lk/blob/master/lib/heap/miniheap/miniheap.c
https://github.com/littlekernel/lk/blob/master/lib/heap/miniheap/miniheap.c
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next one, and sets the address of the next one in the next field of the
prev one (see Listing 4).

Listing 4: Removing a free chunk named node from the list

1 node->next->prev = node->prev;

2 node->prev->next = node->next;

3 node->prev = node->next = 0;

This way, we can turn a heap overflow into an arbitrary write with
the constraint that both addresses must be writable. To turn this into a
code execution, we put in next the address of the stack where the return
address of the allocation function is, and we put in prev the address of
our buffer where we placed our shellcode (See Fig 3, step 2). As the heap
is executable, when the allocation function returns, our shellcode will be
executed (See Fig 3, step 3).

Fig. 3. The three states of the heap during the exploit

Of course there are many other little details that are important to
make the exploitation succeed, here is a non-exhaustive list:

— the size of the free chunk must be exactly the same as the chunk
being allocated, otherwise the algorithm will try to create another
free chunk for the remaining size;
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— the state of the heap after exploitation is broken and must be
restored post exploitation for allocations to work again;

— the stack address is always the same (no ASLR), so we simply need
to leak it once;

— the behavior is different whenever the next free chunk is followed
by an allocated one in memory.

Debugging the Exploit: Emulation of the Parser It can be very
helpful to have access to some sort of debugging capabilities to implement
our exploit. For that, we implemented an emulator with Unicorn [2] which
is the notorious CPU emulator framework based on Qemu and is quite
straightforward and easy to use.

To build our emulator script we need to reverse engineer the bootloader
and find:

— the base address where the code should be mapped;
— the entry point of the vulnerable function;
— the input format.
While writing an emulator with Unicorn can be very fast, we can

note some limitations compared to using Qemu directly. For instance,
there is no support for interrupts, signifying that we cannot emulate the
full Operating System, but have to isolate a set of functions we want to
target. On the same note, Unicorn is not designed to emulate hardware
components. When building our emulator, we will have to hook every
function or instructions that eventually perform one of these operations
and deal with them through the hook handler, which can have a high
impact on the execution speed.

In this context, we have to hook the functions used to log information
and the ones used to read or write data on the flash memory, like the
JPEG file.

As explained before, the state of the heap is really important for
the exploitation. To make sure the heap of our emulator has the same
state as the one in the device, we decided to dump its content from the
device’s memory, just before the execution of the code we want to emulate.
We achieved this by patching the bootloader: we implemented our own
function to write the content of the heap in a specific partition (we choose
the partition named SPU which seems to be unused) and then we patched
the part of the code loading the JPEG to call our dump function. To bypass
the secure boot and run our modified bootloader, we used MTKClient 3

which exploits a vulnerability present in the boot ROM. Thanks to this,

3 https://github.com/bkerler/mtkclient

https://github.com/bkerler/mtkclient
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we now have an emulator in which the heap will behave exactly the same
as in the device and we are able to produce an exploit that will also work
on both environments.

Fig. 4. Message shown on the screen when the PoC works

To summarize, the vulnerability we discovered can lead to code execu-
tion in LK and the exploit will be persistent even after factory reset. This
vulnerability impacts a wide range of Samsung devices: among them we
identified A22, A32, A14, A34, A15 but there are probably others. We can
also note that this vulnerability is also present in newer Samsung devices,
such as the A15, which rely on the new generation of MediaTek SoCs
where the infamous boot ROM vulnerability exploited by MTKClient has
been fixed. Once our vulnerability is exploited, we have full control over
the Normal World Execution Levels 1 and 0. This means that we can
control the Android system and apply any modifications we want. Yet, to
trigger our vulnerability, we need a way to write the up_param partition
on the flash memory.

2.2 Odin Authentication Bypass

Odin is a protocol, on top of USB, that allows to write images on
the flash storage of the device. Past research [5] have shown that it is an
interesting target for vulnerability research in order to aim at the secure
boot. It is implemented in BL3-3 (Little Kernel in our case) and can be
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started by booting the device in Download Mode. To do so, the user can
maintain Volume-up and Volume-down buttons pressed while plugging
the USB cable on an offline device.

Most images that can be flashed through Odin have to be authenticated.
A footer, starting with the magic SignerVer02 contains the signature and
is present at the end of the image.

In Little Kernel, Odin is started as two threads: the first one, Odin

implements the protocols, and the second one, Odin_write is used to
write the file content in the flash memory. When a file is received, the
first thread will wake up the other one by triggering an event. In order to
write a partition in the flash storage, Odin_write will call the function
nand_write.4 This function will first look into the Partition Information

Table (pit) for the partition name. This table is used by Odin to describe
the partitions. Among other things, it indicates the partition names, the
sector offset where it starts, its size, and so on. The following extract is a
human-readable representation (see listing 5) that can be shown by the
tool heimdall 5, which is an open source client for Odin protocol.

Note that only the entries present in the pit table, and for which the
field Flash Filename is not empty can be flashed through Odin.

For these partitions, the function nand_write will call
check_secure_download to authenticate the image. This function
will first call LookupAuthInfo in order to retrieve from a global array,
a structure describing how the image should be authenticated. This
array is statically allocated and whenever a partition is not found by
LookupAuthInfo, the system considers that no authentication is required,
and check_secure_download will simply return without any error. As a
result, nand_write will proceed and write the image in the flash memory.

We listed all the partitions present in the pit table but not in the
global array: md5hdr, md_udc, pgpt, sgpt, steady, and vbmeta_vendor.
Two partitions are particularly interesting: pgpt and sgpt. Indeed they
point to the GUID Partition Table (GPT) headers of the flash memory.
The GPT table is similar to the pit table: it describes all the partitions,
indicating names, sizes, starting offsets, and so on. There is a primary
header at the beginning of the flash, and a secondary one at the end.

Thus, the main issue here is that we can change the GPT table with a
physical access to the device and without authentication.

4 All the thread and function names where retrieved from strings and symbols present
in the firmware through reverse engineering

5 https://github.com/Benjamin-Dobell/Heimdall

https://github.com/Benjamin-Dobell/Heimdall
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Listing 5: Extract of the command heimdall print-pit

1 --- Entry #0 ---

2 Binary Type: 0 (AP)

3 Device Type: 2 (MMC)

4 Identifier: 80

5 Attributes: 2 (STL Read-Only)

6 Update Attributes: 1 (FOTA)

7 Partition Block Size/Offset: 0

8 Partition Block Count: 8192

9 File Offset (Obsolete): 0

10 File Size (Obsolete): 0

11 Partition Name: bootloader

12 Flash Filename: preloader.img

13 FOTA Filename:

14

15 --- Entry #1 ---

16 Binary Type: 0 (AP)

17 Device Type: 2 (MMC)

18 Identifier: 70

19 Attributes: 5 (Read/Write)

20 Update Attributes: 1 (FOTA)

21 Partition Block Size/Offset: 0

22 Partition Block Count: 34

23 File Offset (Obsolete): 0

24 File Size (Obsolete): 0

25 Partition Name: pgpt

26 Flash Filename: pgpt.img

27 FOTA Filename:

28

29 --- Entry #2 ---

30 Binary Type: 0 (AP)

31 Device Type: 2 (MMC)

32 Identifier: 71

33 Attributes: 5 (Read/Write)

34 Update Attributes: 1 (FOTA)

35 Partition Block Size/Offset: 34

36 Partition Block Count: 32

37 File Offset (Obsolete): 0

38 File Size (Obsolete): 0

39 Partition Name: pit

40 Flash Filename:

41 FOTA Filename:

42 ...
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The GPT table is used by most of the components of the firmware
when reading or writing a partition. The pit table seems to be used
mainly for features such as Odin or to show logos on the screen from the
up_param partition. For the later one, it means that even if we change the
partition up_param in the GPT table, Little Kernel will still read it from
the same place, using information from the pit table.

Exploiting the vulnerability Yet, it is possible to leverage this vul-
nerability to flash all the partitions without authentication, including
up_param. First of all, there is an official way to flash the pit table
through Odin. The image containing the pit is signed and it requires
authentication when being flashed. Nevertheless, there is no signature
verification when the pit is read. By default, it is present at a fixed offset
in the flash memory (0x4400 in the case of the A225F). Even so, the
function responsible for reading it will first look for a partition called
pit in the GPT table. If there is one (and there is no such partition by
default), it will be read from there (see listing 6).

Listing 6: Code snippet of the function read_pit extracted from
Ghidra

1 uVar3 = 0x4400;

2 iVar1 = get_part_table("pit" );

3 if (iVar1 == 0) {

4 uVar3 = get_partition_offset("pit" );

5 }

6 uVar2 = storage(3);

7 iVar1 =

storage_read(uVar2,0x4000,(int)uVar3,(int)((ulonglong)uVar3 >>

0x20),&ODIN_TEMP_BUF,0x4000);

→֒

→֒

Therefore we should be able to change the data being read by creating
a pit partition in the GPT table. To achieve that, we can use the following
steps:

1. First, we flash a new pit table in the partition vbmeta_vendor,
which does not require authentication. In this table, we rename
the partition md5hdr to up_param and do the other way around
for up_param;

2. Then, we flash a modified version of the partition up_param in
md5hdr where we place different JPEG files ;

3. Finally, we flash a new pgpt partition containing the GPT table
where we simply renamed the partition vbmeta_vendor to pit.
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Our proof-of-concept consists of three shell commands using heimdall
as a client (listing 7).

Listing 7: The Odin exploit in three commands

1 $ heimdall flash --vbmeta_vendor file-patched.pit

2 ...

3 $ heimdall flash --md5hdr up_param-patched.bin

4 ...

5 $ heimdall flash --pgpt gpt/gpt-patched-pit.bin

6 ...

As a result, we can see that the new up_param partition is used since
our JPEG is shown on the screen (see figure 5).

Fig. 5. Modified JPEG shown on screen which proves that the exploit worked

To sum up, with this vulnerability we can bypass the authentication in
Odin, meaning that we can flash anything anywhere on the flash storage,
with a physical access to the device as the only requirement. It seems to
impact all the Samsung devices based on MediaTek SoCs. Combined with
the previous vulnerability in the JPEG loader, we can bypass the secure
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boot and fully control the Normal World privilege level EL1, including
the Android system. We have shown in our previous research how it is
possible to modify Little Kernel to bypass secure boot and modify the
Android system to root it.

However, we are still not able to control the Secure World. Indeed,
in the Android field the Secure World is used to deal with sensitive
information such as secret keys or DRMs.

3 Targeting ARM Trusted Firmware

3.1 Introduction to the Secure Monitor

Arm Trusted Firmware (ATF) is the reference implementation of a
Secure Monitor for the ARM A-Profile platform.
To understand the role of the Secure Monitor, one must understand how
modern mobile devices use security features such as TrustZone.
Android runs conjointly with a TEE (Trusted Execution Environment)
such as TEEGRIS in the case of Samsung phones. A TEE is guaranteed
to be isolated from Android by leveraging the TrustZone feature from
ARM processors.
ARM defines different Exception Levels (EL) ranging from 0 to 3 that can
be either Secure or Non-Secure:

Fig. 6. Exception Levels with Secure and Normal Worlds

As seen on the schema above, the Secure Monitor is the most privileged
piece of software running on Android mobile devices. It allows the Non-
Secure World to communicate with the Secure World and vice-versa.
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To communicate with the Secure World from the Normal World, the
kernel running in NS.EL1 has to send Secure Monitor Calls (SMCs) to the
Secure Monitor. The secure monitor uses the handler corresponding to the
given SMC request, and may pass the data to the TEE running in S.EL1
if it is needed to process the request. The convention used regarding SMC
parameters is defined in the SMC Calling Convention [3] documentation.

Exception Levels 0, 1 and 2 in both secure and Normal Worlds have
their own virtual address space. The ARM Architecture Manual [4] de-
scribes several flags that are used in the page table entries to protect the
memory pages, such as the regular RWX flags, but also the NS flag to
distinguish between secure and Normal World. This prevents one context
to manipulate memory of the other.
EL3 is the most privileged Exception Level and can interact with both
worlds.
And because of its privileges, it is able to map any physical address to its
own virtual address space. This proves to be useful, as we show later on.

We need to retrieve the Secure Monitor binary in order to start reverse
engineering it. It can be extracted from the Samsung ROM in the partition
named tee-verified.img. Every file on this partition is preceded by a
particular header:

Fig. 7. tee-verified partition architecture

A magic number of 4 bytes 0x88168858 (in red) indicates a new entry.
The size of the entry of 4 bytes 0x26c00 is right next to it (in green) in
little endian. Then we have the name of the entry (in blue).
As you can see, we are lucky as atf is the name of the first entry, which is
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exactly what we are looking for. We can see that its content can be easily
identified with the string EET KTM (in pink).
Once extracted, we can start doing static analysis.

3.2 Static Analysis versus Dynamic Analysis

As said earlier in this paper, ATF is the reference implementation
provided by ARM. Even though Samsung and MediaTek modified it to
their needs, most of the code remains the same and can be studied to
provide a better insight at how things work. 6

While analyzing the code, we noticed a few debug messages that
allowed us to put a name on the unknown functions and have a rough
idea of what the code is doing here and there.
To communicate with ATF, we must be able to send SMCs to it, but the
SMC instruction is only available in EL1 (kernel mode).
Assuming we have root access on the device, we can simply create a kernel
module that exposes a device file accessible from userland to forward the
parameters to the ATF for the sake of convenience.
Once the kernel module is ready and successfully loaded, we can interact
with ATF and try to debug it dynamically.

At this stage, it would be tempting to try fuzzing the SMC handlers
to automate the vulnerability research. But because the ATF is the most
privileged software running on the device, messing with it often means
crashing the whole phone, which makes the process very tedious. So
we would have to emulate the ATF entirely using Unicorn for example.
However, while analyzing the code, we noticed that many of the handlers
are closely interacting with the hardware and concluded that the few
remaining candidates would not be very interesting to fuzz. So we resorted
to pure static analysis instead.

3.3 The Vulnerabilities

The handlers for the different SMCs are defined in the
mediatek_plat_sip_handler_kernel function. Two of them, SMC
0xc2000526 and 0x82000526 share the same handler that looks inter-
esting (see Listing 8).

The first argument arg1 is not checked and used to read a value
at the address arg1 * 4 + 0x4ce2f578. This means that if we pass
(arbitrary_address - 0x4ce2f578) / 4 to our kernel module as the
first argument, we can read an arbitrary address.

6 https://github.com/ARM-software/arm-trusted-firmware

https://github.com/ARM-software/arm-trusted-firmware
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Listing 8: Code snippet of the handler for SMC 0x82000526 ex-
tracted from Ghidra

1 [...]

2 smcid = 0x82000526;

3 if (smc_id == smcid) {

4 out_value = (ulong)*(uint *)(arg1 * 4 + 0x4ce2f578);

5 goto exit;

6 }

7 [...]

8 exit:

9 param_7[2] = out_value;

10 param_7[1] = arg1;

11 goto LAB_4ce0c2c8;

12 [...]

13 LAB_4ce0c2c8:

14 *param_7 = 0;

15 return param_7;

However, we saw previously that the Secure Monitor also uses a
virtual address space. This means that we can’t just use a physical ad-
dress to read. Or can we? Looking at the other SMC handlers, we saw
that some eventually call what looks like an mmap function. This is the
case for SMC number 0x8200022a that calls a function that we named
spm_load_pcm_firmware. This function also calls a wrapper to our mmap

function (see Listings 9 and 10).

Luckily for us, this mmap_wrap function maps a physical address to
the very same virtual address. This means we can mmap any memory
region up to a size of 0x100000 and then read what’s inside it using our
previous leak.

Listing 9: Code snippet of SMC 0x8200022a that leads to an arbi-
trary mmap

1 [...]

2 if (smc_id == 0x8200022a) {

3 LAB_4ce0c208:

4 spm_load_pcm_firmware(arg1,arg2,arg3);

5 goto LAB_4ce0c2f0;

6 }

7 [...]
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Listing 10: Code snippet of function spm_load_pcm_firmware

1 undefined * spm_load_pcm_firmware(ulong param_1,undefined

*addr,ulong size) {→֒

2 switch(param_1 & 0xffffffff) {

3 case 0:

4 [...]

5 break;

6 case 1:

7 if (size < 0x100001) {

8 mmap_wrap((ulong)addr,size);

9 [...]

10 }

Using these two vulnerabilities, we can mmap a memory region using
its physical address and then leak it.
After several tests, it appears that we are limited to 8Mo of mapped
memory, which corresponds to calling 8 times the mmap function. Calling
it more than 8 times makes the device crash. It is likely that we exceed
the maximum number of memory pages allowed for ATF.

4 Leaking secret keys

4.1 Android Keystore and Hardware-backed Keys

The Android Keystore [8] provides to applications a safe way to store
and use cryptographic keys. These keys can rely on several security modules
providing different levels of security which are:

— The Trusted Environment, which is used whenever the keys rely
on the TEE (e.g., TrustZone with ARM architectures);

— Strongbox that is used when the keys rely on a security chip, such
as the Titan M by Google [6];

— Software, the least secure one, which is used when no hardware
protection is implemented.

TEEGRIS [1] has its own Keystore backend application (called Key-

master), which is used to store most of the keys.

As there is usually only a little persistent memory available in the
secure hardware environment, the keys are stored in the Android data
partition as encrypted keyblobs. Indeed, for every Keystore keys (called
Key Material in Figure 8), the secure hardware (either Strongbox or Trusted

Environment), derives a cryptographic key called a key encryption key,
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from its own internal secrets. The key encryption key is then used to
encrypt the Key Material and generate the encrypted keyblob.

The careful reader may have noticed that an attacker, with enough
privileges on the Android system, is able to use any of these keyblobs and
ask the keystore to perform any operations with it. However, it should be
possible to access these keys decrypted, with the capability to leak Secure
World’s memory.

Fig. 8. Structure of the Keyblob

As with many other cryptographic mechanisms, the keystore inter-
nally uses begin, update, and final operations to carry its cryptographic
operations. This is illustrated below:

Fig. 9. Cryptographic operations used by the Keystore
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While we won’t delve too much into the details of these operations, it
is important to understand that the key is loaded and decrypted in the
Secure World RAM during the begin operation.

4.2 Leaking the keys

Now that we have a better understanding of the Keymaster Trusted

Application (TA), we can try to leak a key that is being used in memory
using our ATF out-of-bound memory read.
The plan is as follows:

— Locate the Keymaster TA in memory
— Start a cryptographic operation by triggering the

beginOperation() function on the Keymaster side to load
the key in memory

— Leak the TA memory using our ATF bug to recover the key
— Resume the cryptographic operation

To locate the Keymaster TA, we can use the logs of Little Kernel
stored in the /proc/last_kmsg file:

Listing 11: Extract of Little Kernel logs in /proc/last_kmsg

1 a22:/ # cat /proc/last_kmsg

2 [...]

3 [4425] mblock_reserve-R[5].start: 0x4ce00000, size: 0x60000 map:0

name:atf-reserved→֒

4 [4425] mblock_reserve-R[6].start: 0xbff70000, size: 0x80000 map:0

name:atf-ramdump-reserved→֒

5 [4425] mblock_reserve-R[7].start: 0xbff00000, size: 0x40000 map:0

name:atf-log-reserved→֒

6 [4426] mblock_reserve-R[8].start: 0x7ac00000, size: 0x400000 map:0

name:tee-secmem→֒

7 [4426] mblock_reserve-R[9].start: 0x7f300000, size: 0xc0000 map:0

name:SSPM-reserved→֒

8 [4426] mblock_reserve-R[10].start: 0x7b200000, size: 0x4000000

map:0 name:tee-reserved→֒

9 [...]

10 [4436] lk finished --> jump to linux kernel 64Bit

These are logs from the previous bootloaders (including the preloader,
the second bootloader, and Little Kernel), before the start of the
Linux kernel. Interestingly, we can see in the logs the various memory
regions allocated for different components such as the Secure Monitor
(atf-reserved in the logs) and the TEE OS (tee-reserved). These
addresses are physical addresses, which is good because we can mmap
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physical addresses using our bug as shown previously. The memory block
of interest here is tee-reserved starting at 0x7b200000.
To determine where the Keymaster TA exactly is in this memory block,
we can simply dump the whole tee-reserved memory block and search for
the TA content.
The Keymaster TA can be found in
/vendor/tee/00000000-0000-0000-0000-4b45594d5354. There are a
few strings for example that we can find both in the binary and in the
memory.
After a few dumps of RAM, we find the content of the TA around the
address 0x7c200000. The content doesn’t seem to change much between
restarts of the device.

Now that we know where the key is susceptible to be, we have to
make sure that it is loaded in RAM while we dump it. To do so, we will
start a cryptographic operation triggering a beginOperation() by the
Keymaster TA. We have options here, we could for example:

1. Create an app that uses the Keystore API to encrypt a message

2. Use the keystore_cli_v2 command-line tool on the Android sys-
tem to encrypt a file

To speed up the implementation of our PoC, we implemented a dummy
application (see Listing 12) that first imports an hardcoded key into the
Keystore and then encrypts a message with it.

Listing 12: Hardcoded Key in our Dummy Application

1 byte[] key = "AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA" .getBytes();

2 SecretKey yourKey = (SecretKey) new SecretKeySpec(key, 0,

key.length, "AES" ); ;→֒

3 [...]

4 keyStore = KeyStore.getInstance("AndroidKeystore" );

5 keyStore.load(null);

6 keyStore.setEntry(

7 "key1" ,

8 new KeyStore.SecretKeyEntry(yourKey),

9 new KeyProtection.Builder(KeyProperties.PURPOSE_ENCRYPT |

KeyProperties.PURPOSE_DECRYPT)→֒

10 .setBlockModes(KeyProperties.BLOCK_MODE_CBC)

11 .setEncryptionPaddings(KeyProperties.ENCRYPTION_PADDING_NONE)

12 .build());

13

14 keyStoreKey = (SecretKey) keyStore.getKey("key1" , null);
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While a bit unrealistic, spotting the key in memory will be easier for
us this way.

Research [11] has been done on Keymaster and presents the different
bricks involved by the Android Keystore API. Behind the scenes, calling
the Keystore API will eventually reach the Keymaster HAL which is
implemented by a service called android.hardware.keymaster@4.0-

service that is in charge of communicating with the other daemons to, at
last, reach the trustzone driver and forward messages to the Secure World.
We can hook the beginOperation() function of the HAL service and
make it wait while we take the time to dump the Keymaster TA memory.
For this purpose, we used a simple Frida script that blocks the execution
while we dump the memory.
This whole process can be better visualized with the Fig 10.

Fig. 10. Hooking the execution flow after a call to beginOperation() using Frida

Then we run our exploit to dump the raw memory from the Keymaster
TA (see Listing 13).

From there, is it quite easy to spot our key (See Fig 11).
This should be enough to show that our attack scenario can lead to

leaking the Keystore keys. It is interesting to note that every time we
repeat this test we will find the key placed in another address which is
due to the allocation algorithm and its state when we run the attack.

Of course, in a real-world scenario, an attacker must find a way to
identify the secret key without requiring prior knowledge about its content.
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Listing 13: Dumping the Keymaster TA Memory

1 for i in ` seq 0x7c200000 0x100000 0x7c500000`

2 do

3 addr=` printf "%x" $i`

4 ./exploit leak_mmap ${addr} 0x100000 > dump-${addr}.txt

5 done

Fig. 11. View of our memory dump that contains the key

5 Conclusion

This article dived into the boot chain and into the trusted execution
environment of Samsung mobile devices based on MediaTek System-on-
Chip. We presented a critical 0-day we discovered that impacts the JPEG
loader on many different low-end devices. Combined with the vulnerability
discovered in Odin, it allows an attacker with a physical access to the
device to bypass the secure boot and take control over the Android system
with persistency. We also showed that two vulnerabilities impacting the
ARM Trusted Firmware, leading to an arbitrary read of the full memory
of the device, are enough to reach the remaining secrets such as the keys
stored in the Android Keystore. All the vulnerabilities we discovered have
been reported to the vendor.
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