
Argo CD Secrets

Nicolas Iooss
nicolas.iooss@ledger.fr

Ledger Donjon

Abstract. Argo CD is a tool designed to manage Continuous Deploy-
ment pipelines between code repositories and Kubernetes clusters. As it is
granted important privileges (it runs by default as cluster administrator),
it is important to ensure it is deployed securely. It heavily relies on stan-
dard Kubernetes objects and store sensitive values in Kubernetes Secrets.
What happens when the content of these Secrets is compromised? This
question is all the more important when a security incident happens.

This article presents how Argo CD uses its Kubernetes Secrets and
provides some recommendations to help ensure the security.

1 Introduction

Managing applications deployed in Kubernetes clusters can be very
complex. Several projects and tools were created to tackle these chal-
lenges. Nowadays, it is common to hear companies use “CI/CD pipelines”
(Continuous Integration and Continuous Delivery 1) to ease deploying and
managing some applications in production environments. This leverages
some components which bridge the source code hosting platform (such
as GitHub 2 or GitLab 3) with the places where applications run, like
Kubernetes clusters.4 Many new terms emerged over time: “Infrastructure
as Code”, “DevOps”, “GitOps”, etc.

This article focuses on a specific project commonly used in such
contexts: Argo CD.5

From developers’ perspective, Argo CD provides a lightweight way to
deploy applications and to monitor their health: most of its configuration
happens in files in git repositories or in Kubernetes resources; the web
interface provides a summary of the state of the application, as well as

1 https://en.wikipedia.org/wiki/CI/CD
2 https://github.com/
3 https://about.gitlab.com/
4 https://kubernetes.io/
5 https://argo-cd.readthedocs.io/en/stable/

https://en.wikipedia.org/wiki/CI/CD
https://github.com/
https://about.gitlab.com/
https://kubernetes.io/
https://argo-cd.readthedocs.io/en/stable/


2 Argo CD Secrets

Fig. 1. Argo CD demonstration website, https://cd.apps.argoproj.io/

a sneak peek at the generated logs and events; the command-line tool
enables to easily automate some tasks.

What about its security? It seems to be taken very seriously:

— The documentation includes a page titled “Security” 6 with great
details about how security-relevant topics are handled (authentica-
tion, authorization, logging, etc.).

— A security policy has been published on GitHub repository
argoproj/argo-cd.7 It includes information about supported ver-
sions, fixed vulnerabilities and a bug bounty program.

— Argo CD is mostly written in Go, a language helping protect against
software memory safety issues.8

— The release artifacts are cryptographically signed and attested. The
documentation explains how to check signatures and attestations.9

— There have been at least two security audits with public reports, in
2021 by Trails of Bits [2] and in 2022 by Ada Logics [6]. Before them,
Soluble published five security issues in a blog post in 2020 [4]. In

6 https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/

security/
7 https://github.com/argoproj/argo-cd/security
8 According to the NSA [1], “Some examples of memory safe languages are [. . . ],

Go.”. Even though it was claimed that data races could break the memory
safety guarantees (in https://blog.stalkr.net/2015/04/golang-data-races-to-

break-memory-safety.html and https://blog.stalkr.net/2022/01/universal-

go-exploit-using-data-races.html), Go is widely considered as memory-safe.
9 https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/signed-

release-assets/

https://cd.apps.argoproj.io/
https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/security/
https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/security/
https://github.com/argoproj/argo-cd/security
https://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html
https://blog.stalkr.net/2015/04/golang-data-races-to-break-memory-safety.html
https://blog.stalkr.net/2022/01/universal-go-exploit-using-data-races.html
https://blog.stalkr.net/2022/01/universal-go-exploit-using-data-races.html
https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/signed-release-assets/
https://argo-cd.readthedocs.io/en/release-2.13/operator-manual/signed-release-assets/


N. Iooss 3

2022 Trend Micro also published a blog post in May 2022 [7] where
it explained how admin’s initial password was stored.

Moreover, its demo website 10 (figure 1) provides anonymous read-only
access. This emphasizes granting read-only access to an Argo CD instance
should not enable attackers to read sensitive data or modify the deployed
applications. For example, the hash of the admin password is stored in a
Kubernetes Secret 11 named argocd-secret. The demo website displays
the content of this Secret 12:

1 data:

2 admin.password: ++++++++

3 admin.passwordMtime: ++++++++

4 server.secretkey: ++++++++

5 tls.crt: ++++++++

6 tls.key: ++++++++

7 kind: Secret

The sensitive values were redacted in the web interface and there is
no way to edit the Secret. If there were, this would be considered as a
vulnerability in Argo CD (and should be reported to Argo CD’s security
team).

This philosophy goes beyond the interface. Indeed, contrary to most
mainstream web application frameworks, Argo CD does not use a database
to store its persistent data. It instead only relies on Kubernetes objects,
using the standard ones and some Custom Resources of its own. This has
the consequence that every persistent sensitive piece of information used by
Argo CD has to be stored in a Kubernetes Secret. This includes configura-
tion values in the previously described Secret argocd-secret, credentials
to access other managed clusters,13 the initial Redis credentials,14 etc.

Despite such a strong security posture, Argo CD can be configured
in ways creating vulnerabilities. In a blog post published in December

10 https://cd.apps.argoproj.io/
11 https://kubernetes.io/docs/concepts/configuration/secret/
12 https://cd.apps.argoproj.io/applications/argocd/argo-cd?view=tree&

resource=&node=%2FSecret%2Fargocd%2Fargocd-secret%2F0
13 function CreateCluster is creating a Secret to store the configuration of

the managed cluster, in https://github.com/argoproj/argo-cd/blob/v2.13.1/

util/db/cluster.go#L109. There also is a Secret containing a persistent ser-
vice account token in each managed cluster, created if needed by function
getOrCreateServiceAccountTokenSecret in https://github.com/argoproj/argo-

cd/blob/v2.13.1/util/clusterauth/clusterauth.go#L258-L332.
14 command argocd admin redis-initial-password creates this secret in

https://github.com/argoproj/argo-cd/blob/v2.13.1/cmd/argocd/commands/

admin/redis_initial_password.go#L48-L72.

https://cd.apps.argoproj.io/
https://kubernetes.io/docs/concepts/configuration/secret/
https://cd.apps.argoproj.io/applications/argocd/argo-cd?view=tree&resource=&node=%2FSecret%2Fargocd%2Fargocd-secret%2F0
https://cd.apps.argoproj.io/applications/argocd/argo-cd?view=tree&resource=&node=%2FSecret%2Fargocd%2Fargocd-secret%2F0
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/db/cluster.go#L109
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/db/cluster.go#L109
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/clusterauth/clusterauth.go#L258-L332
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/clusterauth/clusterauth.go#L258-L332
https://github.com/argoproj/argo-cd/blob/v2.13.1/cmd/argocd/commands/admin/redis_initial_password.go#L48-L72
https://github.com/argoproj/argo-cd/blob/v2.13.1/cmd/argocd/commands/admin/redis_initial_password.go#L48-L72


4 Argo CD Secrets

2024 [5], I studied two examples where Argo CD was deployed in ways
which unexpectedly enabled privilege escalation and authentication bypass.
In the second example, an attacker started their attack on Argo CD through
accessing its Secrets. This kind of lateral movement attack curiously seems
to be missing from the public state of the art related to Kubernetes cluster
security. This article presents this example once again, highlighting the
importance of Kubernetes Secrets.

2 Deployment Use-Case

Argo CD stores all its settings in Kubernetes resources such as Ku-
bernetes ConfigMaps and Secrets. The Secrets can be synchronized with
other secret management systems like AWS Secrets Manager,15 HashiCorp
Vault,16 etc. A possible way to do this consists in deploying External
Secrets Operator (ESO) 17 in a cluster. Such a configuration appears to
be quite common, according to presentations given at public conferences,
like one given at KubeCon + CloudNativeCon Europe 2024 [3].

The security policy around the secret management system is some-
times not fine-grained enough. For the studied use-case, let’s consider an
AWS account having two EKS 18 clusters for different purposes: “Cluster
A” and “Cluster B”. The administrator followed the official documen-
tation to configure their AWS account.19 Each ESO service account on
Kubernetes is associated with an AWS IAM 20 role with the permission to
read all secrets (action secretsmanager:GetSecretValue on resource
arn:aws:secretsmanager:eu-west-3:111122223333:secret:*). Here
is the associated IAM Policy, created after reading the documentation:

1 {

2 "Version": "2012-10-17",

3 "Statement": [

4 {

5 "Effect": "Allow",

6 "Action": [

7 "secretsmanager:GetResourcePolicy",

8 "secretsmanager:GetSecretValue",

9 "secretsmanager:DescribeSecret",

10 "secretsmanager:ListSecretVersionIds"

15 https://aws.amazon.com/secrets-manager/
16 https://www.vaultproject.io/
17 https://external-secrets.io/
18 Amazon Elastic Kubernetes Service https://aws.amazon.com/eks/
19 https://external-secrets.io/v0.10.6/provider/aws-secrets-manager/
20 AWS Identity and Access Management https://aws.amazon.com/de/iam/

https://aws.amazon.com/secrets-manager/
https://www.vaultproject.io/
https://external-secrets.io/
https://aws.amazon.com/eks/
https://external-secrets.io/v0.10.6/provider/aws-secrets-manager/
https://aws.amazon.com/de/iam/


N. Iooss 5

11 ],

12 "Resource": [

13 "arn:aws:secretsmanager:eu-west-3:111122223333:secret:*"

14 ]

15 }

16 ]

17 }

To make things more precise, this example considers that Argo CD is
installed in Cluster A, its Kubernetes Secret argocd-secret is synchro-
nized with AWS Secrets Manager, and an attacker managed to compromise
Cluster B (figure 2). This means that the attacker can impersonate the
External Secrets Operator deployed in Cluster B to read all secrets stored
in the shared AWS Secrets Manager.

In such a scenario, can the attacker move to Cluster A?

Fig. 2. Clusters using External Secrets Operator in the same AWS account



6 Argo CD Secrets

3 Lateral Movement Attack

The attacker can configure their AWS command-line to use
the authentication token from Cluster B’s ESO.21 They can then
read the AWS secret associated with argocd-secret with a com-
mand such as aws secretsmanager get-secret-value --secret-id

platform/argocd/secret (the name of the AWS secret could be guessed
or obtained through other means):

1 {

2 "ARN": "arn:aws:secretsmanager:eu-west-3:[...]",

3 "Name": "platform/argocd/secret",

4 "SecretString": "{\"admin.password\":\"$2a$10$4sRnwtvm9XMbSAPDZyImTeh3 ⌋

7MREP6yDnRfellIQamT/cuMn5Jgm.\",\"server.secretkey\":\"JA+Lqmv/d7TbM ⌋

8yrOEIT+cRIsJAGxAxrqo6hghOK9MQ=\"}",

→֒

→֒

The SecretString contains the password hash of the admin user,
in the field admin.password. The attacker could attempt to guess the
password or to crack it through brute-force methods. However, such attacks
would likely fail due to the password being randomly generated (in this
example, the password was generated by Argo CD and its value was
AFZTfDcfHySb2Skv)."

Moreover, if the AWS IAM policy used by Cluster B’s ESO included
secretsmanager:PutSecretValue (which is required for ESO feature
PushSecret), the attacker would be able to modify the password hash.
This would enable them to impersonate the admin user.

In the general case, knowing the hash in admin.password does not
help the attacker much. But the Kubernetes Secret contains another field,
server.secretkey. What is it used for?

In Argo CD’s source code, server.secretkey is called the “server
signature key”. It is used to sign and verify a session token with HMAC-
SHA256 in argo-cd:util/session/sessionmanager.go:

1 func (mgr *SessionManager) signClaims(claims jwt.Claims) (string, error) {

2 token := jwt.NewWithClaims(jwt.SigningMethodHS256, claims)

3 // ...

4 return token.SignedString(settings.ServerSignature)

5 }

21 for example by configuring relevant environment variables such as AWS_ROLE_ARN,
AWS_WEB_IDENTITY_TOKEN_FILE and AWS_ROLE_SESSION_NAME as documented by
AWS in https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-

envvars.html

https://github.com/argoproj/argo-cd/blob/v2.13.1/util/session/sessionmanager.go
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-envvars.html


N. Iooss 7

Knowing the key should be enough to forge a token to imperson-
ate the user admin. There are some caveats to take care of (function
GetSubjectAccountAndCapability requires the subject claim to actually
be admin:login; function Parse requires the token to have a non-empty
ID in claim jti; the issuer has to be argocd). Here is some Python code
which forges a token valid for 24 hours, solving the difficulties:

1 import base64

2 import json

3 import hmac

4 import time

5

6 def b64url_encode(data: bytes) -> bytes:

7 return base64.urlsafe_b64encode(data).rstrip(b"=")

8

9 def forge_jwt(key: str, audience: str = "argocd") -> str:

10 now = int(time.time())

11 header = json.dumps({

12 "alg": "HS256",

13 "typ": "JWT",

14 }).encode("ascii")

15 claims = json.dumps({

16 "iss": "argocd",

17 "aud": audience,

18 "iat": now,

19 "nbf": now,

20 "exp": now + 24 * 3600,

21 "sub": "admin:login",

22 "jti": "01234567-89ab-cdef-0123-456789abcdef",

23 }).encode("ascii")

24 signed = b64url_encode(header) + b"." + b64url_encode(claims)

25 signature = hmac.digest(key.encode("ascii"), signed, "sha256")

26 token = signed + b"." + b64url_encode(signature)

27 return token.decode("ascii")

28

29 print(forge_jwt("JA+Lqmv/d7TbM8yrOEIT+cRIsJAGxAxrqo6hghOK9MQ="))

In a web browser, defining cookie argocd.token with the produced
token is enough to bypass the login screen and successfully authenticate
as admin.

Even though the obtained administrator privileges enable many actions
in Argo CD, it does not enable reading Kubernetes Secrets or imperson-
ating service accounts. It is nevertheless possible to deploy new Argo
CD applications (if the underlying Kubernetes cluster enables it, which
is usually true). The attacker can then deploy their own Helm chart

https://github.com/argoproj/argo-cd/blob/v2.13.1/util/session/sessionmanager.go#L188-L200
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/session/sessionmanager.go#L188-L200
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/session/sessionmanager.go#L261-L262
https://github.com/argoproj/argo-cd/blob/v2.13.1/util/session/sessionmanager.go#L58


8 Argo CD Secrets

with a Kubernetes Job 22 running commands with cluster administration
privileges.

4 Recommendations to Mitigate the Attack

First, the Kubernetes Secret argocd-secret is very sensitive, as any-
one who knows it can impersonate any local user in Argo CD, including
admin. If it is synchronized with ESO, access to the Secrets Manager
should be properly defined to prevent unauthorized access.

Second, as documented in Argo CD’s documentation, the initial admin
password should be modified, and the new one should be robust enough
so that gaining access to the password hash does not enable an attacker
to guess it. Moreover, when administrators are authenticated through
some SSO (Single Sign On), disabling the local admin account successfully
prevents the described attack (usually, session tokens of SSO users are not
signed by server.secretkey).

Third, it reduces the impact of the attack to run Argo CD without
cluster administration privileges and to apply some well-known best prac-
tices to harden the Kubernetes cluster. This includes configuring it to
reject creating privileged pods in some namespaces, reducing the privileges
of service accounts and configuring fine-grained AWS IAM policies for
external resources.

Finally, if a security incident response analysis finds out the attacker
managed to read argocd-secret, it makes sense to consider the attacker
gained cluster administration privileges and to act accordingly. This may
include reviewing the logs looking for more lateral movements, searching for
some backdoors left by the attacker, revoking all access tokens, regenerating
all passwords as well as server.secretkey, etc.

5 Conclusion

This article presents a kind of lateral movement attack in a context
where Kubernetes clusters share the same external storage for their Secrets.

Even though Argo CD employs state-of-the-art security practices, this
illustrates the importance of considering how it has been deployed when
assessing its security.

22 https://kubernetes.io/docs/concepts/workloads/controllers/job/

https://kubernetes.io/docs/concepts/workloads/controllers/job/


N. Iooss 9

References

1. National Security Agency. NSA Releases Guidance on How to Protect Against
Software Memory Safety Issues.
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/

3215760/nsa-releases-guidance-on-how-to-protect-against-software-

memory-safety-issues/, November 2022.

2. Dominik Czarnota, David Pokora, and Mike Martel. Trail of Bits. Argo Security
Assessment.
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6

fcbda841f28/docs/argo_security_final_report.pdf, March 2021.

3. Mads Høgstedt Danquah and Jeppe Lund Andersen. The LEGO Group. Keeping
the Bricks Flowing: The LEGO Group’s Approach to Platform Engineering for
Manufacturing. https://youtu.be/SmeekXGYuFU, March 2024.

4. Matt Hamilton. Soluble. Argo CVEs.
https://web.archive.org/web/20220330042723/https://www.soluble.ai/

blog/argo-cves-2020, April 2020.

5. Nicolas Iooss. Ledger Donjon. Argo CD Security Misconfiguration Adventures.
https://www.ledger.com/argo-cd-security-misconfiguration-adventures,
December 2024.

6. Adam Korczynski and David Korczynski. Ada Logics. Argo Security Assessment.
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6

fcbda841f28/docs/argo_security_audit_2022.pdf, July 2022.

7. Magno Logan. Trend Micro. Abusing Argo CD, Helm, and Artifact Hub: An
Analysis of Supply Chain Attacks in Cloud-Native Applications.
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-

exploits/abusing-argo-cd-helm-and-artifact-hub-an-analysis-of-supply-

chain-attacks-in-cloud-native-applications, May 2022.

https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://www.nsa.gov/Press-Room/News-Highlights/Article/Article/3215760/nsa-releases-guidance-on-how-to-protect-against-software-memory-safety-issues/
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6fcbda841f28/docs/argo_security_final_report.pdf
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6fcbda841f28/docs/argo_security_final_report.pdf
https://youtu.be/SmeekXGYuFU
https://web.archive.org/web/20220330042723/https://www.soluble.ai/blog/argo-cves-2020
https://web.archive.org/web/20220330042723/https://www.soluble.ai/blog/argo-cves-2020
https://www.ledger.com/argo-cd-security-misconfiguration-adventures
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6fcbda841f28/docs/argo_security_audit_2022.pdf
https://github.com/argoproj/argoproj/blob/2db4cda94956307ee080f51759aa6fcbda841f28/docs/argo_security_audit_2022.pdf
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/abusing-argo-cd-helm-and-artifact-hub-an-analysis-of-supply-chain-attacks-in-cloud-native-applications
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/abusing-argo-cd-helm-and-artifact-hub-an-analysis-of-supply-chain-attacks-in-cloud-native-applications
https://www.trendmicro.com/vinfo/us/security/news/vulnerabilities-and-exploits/abusing-argo-cd-helm-and-artifact-hub-an-analysis-of-supply-chain-attacks-in-cloud-native-applications

	Argo CD Secrets

