
Analyzing the Windows kernel

shadow stack mitigation

Rémi Jullian and Alexandre Aulnette
remi.jullian@synacktiv.com

alexandre.aulnette@synacktiv.com

Synacktiv

Abstract. Intel and Microsoft worked together, with other players from
the industry, to implement a mechanism named Intel CET, introducing
a new mitigation, the shadow stack. Effective both in user mode and
kernel mode, this mitigation has been designed to defeat exploit relying
on control-flow hijacking, by overriding return addresses on the stack.
In this paper, we will discuss the role of this mitigation. We will also
deep dive into the implementation of this mitigation in the Windows
kernel. We will explain how the Windows operating system leverage on
virtualization technics to protect the shadow stack integrity, and to ensure
this mitigation cannot be disabled on a live system, even if an attacker
possess strong primitives such as a read/write in the kernel.

1 Introduction

1.1 A bit of history

When trying to exploit memory corruption vulnerabilities, attackers’
final goal is to achieve code execution, generally by allocating and writing
to an executable page, in order to execute an arbitrary payload. Data

Execution Prevention (DEP) was introduced in the Windows operating
system as a security feature to mitigate exploits that involve executing
code from non-executable memory regions. On the Windows operating sys-
tem, up to Windows 8, all pages of memory allocated by the kernel in the
non-paged pool area were executable. With Windows 8 (64-bit), Microsoft
introduced a new pool type, non-executable, the NonPagedPoolNx (0x200)
[10]. For compatibility reasons, Windows still allows drivers to allocate ex-
ecutable memory from the pool NonPagedPool. However by implementing
mitigation based on virtualization technology such as Hypervisor-Based

Code Integrity (HVCI), a secure kernel is used to ensure that all pages of
kernel executable code are signed, and that these pages, once marked as
an executable, cannot be writable again (W⊕X). In other words, attackers
can’t just allocate a new executable page of code, write a shellcode and

2 Analyzing the Windows kernel shadow stack mitigation

execute an arbitrary payload. In order to bypass this mitigation, a common
method is to rely on Return-Oriented Programming (ROP), Jump-Oriented

Programming (JOP) or Call-Oriented Programming (COP) mechanisms.
To mitigate these technics, Intel developped a new set of hardware based
mitigations named Intel Control-flow Enforcement Technology (CET).
These mitigations are used to prevent forward-edge (indirect call/jump)
and backward-edge (ret) control-flow transfer. The shadow stack is a
back-edge oriented mitigation, part of Intel CET, designed to defeat ROP.
In this paper, we will focus on the implementation of the shadow stack
in the Windows kernel. We will discuss how it prevents executing ROP
attacks and how it relies on virtualization to protect against an attacker
with read/write primitive against the kernel. Finally, we will discuss the
limitations of this mitigation.

1.2 State of the art

In 2018, Microsoft stated they were planning to use Intel CET for
backward edge protection [23]. In 2019, B. Sun et al described in depth
the implementation of Intel CET for Windows 10 x64 (RS5), to support
user mode shadow stack [1]. The internals of user mode shadow stack
capabilities have also been covered by Y. Shafir and A. Inoescu in [24].
In 2020, both Intel [7] and Microsoft [21] released blogposts describing
this mitigation from a high-level perspective. In 2023, Y. Shafir mentioned
that the kernel mode shadow stack was relying on virtualization mecha-
nisms [22]. Finally, in 2025, C. McGarr released the first paper describing
in details the kernel mode shadow stack implementation on Windows [13].
In this paper, we will focus on the kernel mode shadow stack, which has
been less reviewed than the user mode shadow stack.

At the time of writing, the kernel shadow stack mitigation is not enabled
by default on Windows 11 (24H2), with a computer meeting appropriate
requirements. This is probably for compatibility reasons. Indeed, Microsoft
states that some (third-party) drivers are currently not compatible with
this mitigation because they use return-address hijacking to perform
code obfuscation [19]. Also, Intel CET Indirect Branch Tracking (IBT)
mitigation is not yet supported in the Windows kernel. Briefly, IBT is a
CPU feature which tracks indirect jmp and call instructions and generates
a fault if the destination instruction is not a ENDBRANCH 1 instruction [1].
At the time of writing, ntoskrnl.exe (Windows 11, 24H2) does not contain

1 ENDBR64 / ENDBR32

R. Jullian, A. Aulnette 3

any ENDBR64 instruction. We have no information regarding Microsoft
plan to support this mitigation in the future.

1.3 Environment

In order to analyze the implementation of the shadow stack in the
Windows kernel, we used both static and dynamic analysis. For dynamic
analysis, we used a kernel debug environment, on a physical computer
running an Intel Core i3-N305 processor (supporting Intel CET and the
virtualization requirements). Reverse engineering was performed on a
Windows 11 24H2 operating System. Some proof-of-concepts have also
been implemented and are accessible on Synacktiv’s github: https://

github.com/synacktiv/windows_kernel_shadow_stack. As Microsoft
provides public PDB files 2 for the Windows kernel (ntoskrnl.exe), most
symbols referenced in the paper can be retrieved for further analysis.
Unless explicitly specified, the symbols mentioned in this paper are always
prefixed by nt!. In order to enable the kernel shadow stack, the following
commands can be used to modify the Windows registry:

Listing 1: Kernel shadow stack activation

1 reg add HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard\\

2 Scenarios\HypervisorEnforcedCodeIntegrity /v Enabled /t

REG_DWORD /d 1 /f→֒

3 reg add HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard\\

4 Scenarios\KernelShadowStacks /v Enabled /t REG_DWORD /d 1 /f

To enable the audit mode, the following command can be used:

Listing 2: Kernel shadow stack audit mode activation

1 reg add HKLM\SYSTEM\CurrentControlSet\Control\DeviceGuard\\

2 Scenarios\KernelShadowStacks /v AuditModeEnabled /t REG_DWORD /d

1 /f→֒

The differences between regular and audit mode are covered later in
the paper.

2 The shadow stack mitigation

With the shadow stack mitigation, when a call instruction is executed,
the return address is pushed on the stack, but also on a separated stack,

2 PDB files are debugging files containing symbols such as function or global variables
names

https://github.com/synacktiv/windows_kernel_shadow_stack
https://github.com/synacktiv/windows_kernel_shadow_stack

4 Analyzing the Windows kernel shadow stack mitigation

called the shadow stack. The shadow stack pointer is stored in a register
called SSP. The operating system is responsible for allocating the memory-
area behind the shadow stack, and for configuring the CPU properly to
enable this mitigation. When a ret instruction is executed by the CPU,
the return address is popped from the stack, and before executing the flow
transfer to the return address, the CPU checks if it matches with the one
at the top of the shadow stack. If not, it will generate a control protection

exception (#CP) and let the operating system decide how the exception
should be handled. The Intel manual [8] provides the following pseudo-code
related to the shadow stack, for a ret (near return) instruction:

Listing 3: Return address verification on a ret instruction

1 ...

2 RIP := Pop();

3 IF ShadowStackEnabled(CPL)

4 tempSsEIP = ShadowStackPop8B();

5 IF RIP != tempSsEIP

6 THEN #CP(NEAR_RET); FI;

7 FI;

8 ...

This mitigation can work in both user mode, where the current privilege

level (CPL) is 3, and in kernel mode where the current privilege level is 0.
The register state used by Intel CET comprises two 64-bit MSRs: [8]:

Architectural MSR Name Register Address Description

IA32_U_CET 0x6a0 Configure User Mode CET (R/W)

IA32_S_CET 0x6a2 Configure Supervisor Mode CET (R/W)

Table 1. Intel CET state related MSR

Also, MSR registers listed in table 2 are used to store the address of the
shadow stack into the SSP when performing privilege level transition [8].
For instance, when performing a transition from user mode (CPL3) to
kernel mode (CPL0), the CPU saves the SSP into the IA32_PL3_SSP

MSR, and load the new SSP from IA32_PL0_SSP. As the Windows
operating System only uses 2 privilege level (CPL0 and CPL3), the MSR
IA32_PL1_SSP and IA32_PL2_SSP are currently not used. The Intel
manual [8] also documents CPU instructions used to manipulate the
shadow stack. Some instructions will be briefly described as they will be

R. Jullian, A. Aulnette 5

Architectural
MSR Name

Register
Address

Description

IA32_PL0_SSP 0x6a4
Linear address to be loaded into

SSP on transition to privilege level 0 (R/W)

IA32_PL1_SSP 0x6a5
Linear address to be loaded into

SSP on transition to privilege level 1 (R/W)

IA32_PL2_SSP 0x6a6
Linear address to be loaded into

SSP on transition to privilege level 2 (R/W)

IA32_PL3_SSP 0x6a7
Linear address to be loaded into

SSP on transition to privilege level 3 (R/W)

Table 2. Intel CET privilege level transition related MSR

referenced later in this paper, in order to describe the implementation of
the shadow stack mitigation in the Windows kernel.

The instruction rdsspq can be used to read the value of the stack
pointer. The destination register can then be dereferenced for reading a
return address which was at the top of the shadow stack:

1 ; Copies the current shadow stack pointer (SSP) register to the

2 ; register destination

3 rdsspq rdx

4 ; Read the value at the top of the shadow stack

5 mov rax, qword ptr [rdx]

The instruction wrssq can be used to write to the shadow stack. The
destination register must contain an address pointing to the shadow stack.
The wrssq instruction is one of the few instructions which are allowed to
perform a write access to the shadow stack. Also, this instruction requires
that the bit WR_SHSTK_EN (Bit 1) is set within the MSR IA32_U_CET (in
user mode) or IA32_S_CET (kernel mode):

1 ; Write the content of the rcx register to the shadow stack

2 ; reference by rax

3 wrssq qword ptr [rax], rcx

3 Virtualization for kernel shadow stack protection

On Windows, VBS (Virtualisation-Based Security) is a set of security
features which relies on virtualization techniques. This allows the operat-
ing system to run 2 different kernels, with isolation between each other
implemented thanks to a mechanism named VTL (Virtual Trust Level):

— the "classical" Windows kernel (ntoskrnl.exe)

6 Analyzing the Windows kernel shadow stack mitigation

— the secure kernel (securekernel.exe)

The secure kernel is more privileged, and runs at VTL 1, while the
regular kernel, less privileged, runs at VTL 0 [5]. On Windows, VTL
isolation is available thanks to Hyper-V, the Windows Hypervisor. Hyper-
V is a type 1 (bare-metal) hypervisor, and thus lies between the hardware
layer and the operating system [3]. As mentioned earlier, HVCI allows to
ensure that all pages of kernel executable code are signed, and that these
pages, once marked as executable, cannot be writable again (W⊕X). HVCI
is also used to protect read-only areas such as the Kernel CFG (Control

Flow Guard) bitmap, or kernel shadow stack’s pages. HVCI relies on
VBS. Another mechanism named KDP (Kernel-Data-Protection), allows
to prevent data corruption attacks by protecting parts of the Windows
kernel [20]. Both HVCI and KDP rely on SLAT (Second Layer Address

Translation). SLAT is a hardware mechanism allowing to add an additional
layer when performing address translation, that is the process of converting
a virtual address to a physical address.

Fig. 1. Virtualisation-Based Security architecture (from [11])

R. Jullian, A. Aulnette 7

Using SLAT, the hypervisor will be able to intercept a memory access
made by the regular kernel, which is actually a GPA (Guest Physical

Address) access, and to convert it to a SPA (System Physical Address)
access [12]. Intel implements this conversion using another set of paging
structure called EPT (Extended Page Tables).

Fig. 2. SLAT implementation

The Virtual Machine Control Structure (VMCS) is a hardware-defined
data structure used by Intel VT-x to manage the execution of a virtual
machine. Each VTL in Hyper-V has its own VMCS, with separate EPTP
(Extended Page Table Pointer) for memory isolation. As illustrated on
figure 2, the EPTP can be retrieved from the VMCS structure, using
a vmread instruction with 0x201a specified in the register operand. To

8 Analyzing the Windows kernel shadow stack mitigation

configure EPT, the secure kernel uses hypercalls to create EPTE (Extended

Page-Table Entries) for the classical kernel [12]. A hypercall is a calling
mechanism used for guest to interface with the hypervisor [11]. In other
words, the classical kernel has no way to interfere with the EPTE. The
EPTP allows walking through the EPTs, and to implement EPTE. By
implementing EPTE, managed only by the hypervisor, which are invisible
to the guest (i.e regular kernel), it is possible to implement another level
of trust. This allows, for instance, to mark a page as read-only in VTL 0,
but writable in VTL 1. Like a regular PTE, the size of an EPTE is 64-bits,
and some bits are used to specify access rights on a physical page. The
format of an EPTE is described in the Intel developer manual [8]. The
following bits are particularly useful for implementing HVCI and KDP:

— Bit 0: Read access; indicates whether reads are allowed from the
4-KByte page referenced by this entry

— Bit 1: Write access; indicates whether writes are allowed from the
4-KByte page referenced by this entry

— Bit 2: Execute access; indicates whether instruction fetches are
allowed from the 4-KByte page controlled by this entry

PTEs associated with the shadow stack set their write access bit to 0,
thus ensuring the shadow stack cannot be modified. In order to enforce
that, the secure kernel will issue, through an hypercall, a request to the
hypervisor, in order to set the page as read only in the EPTE for VTL
0. This is described with more details in section 4.7. The hypervisor will
be able to catch and deny any write access tentative, by identifying that
the write access bit is not set in the EPTE. Using EPT to prevent writes
to the supervisor shadow-stack pages of a VM is detailed in section 9.5
(Supervisor Shadow-Stack Control) from Intel CET specifications [6].

4 Implementation in the Windows kernel

In order to enable the shadow stack mitigation, the operating system
needs to perform several tasks such as:

— Initializing the exception handler, triggered by the CPU when a
control protection exception (#CP) occurs

— Allocating a per-thread shadow stack and protecting it against a
write operation implemented in software

— Enabling the mitigation at the CPU level

All these steps are explained in the following sections.

R. Jullian, A. Aulnette 9

4.1 Exception handler initialization

During the boot process, the function KiInitializeIdt is respon-
sible for setting up the Interrupt Dispatch Table (IDT), which man-
ages how the processor handles interrupts and exceptions. Within the
INITDATA section of ntoskrnl, the symbol KiInterruptInitTable defines
the initial configuration of the interrupt handlers used to populate the
IDT. Specifically, the entry at vector 0x15 in this table points to the
KiControlProtectionFault handler:

Fig. 3. KiControlProtectionFault handler

This handler is invoked when the processor raises a Control Protection
Exception (#CP), which is triggered by violations related to Intel CET,
such as shadow stack corruption or indirect branch tracking violations.
The vector entry index 0x15 is actually defined in the Intel manual [8]
(Volume 1, Table 6-1. Exceptions and Interrupts).

4.2 Kernel shadow stack activation

In this section, we will describe how the Windows kernel enables the
shadow stack mitigation.

Kernel initialization: During the kernel initialization, the function
KiInitializeKernel calls KiSetControlEnforcement, to enable this
mitigation if it is supported by the CPU. More precisely, a cpuid in-
struction (with rax set to 0x07 and rcx set to 0x0) is used to query
the CPU structured Extended Feature Flag. If the shadow stack is sup-
ported, cpuid sets the bit labeled CET_SS [8], indicating it supports the
shadow stack mitigation, as an output bit within the rcx register. This
bit is test and used to set a global variable named KiCetCapable, if the
field CpuVendor of the KPRCB structure (Kernel Processor Control Block)
equals 1 (WheaCpuVendorIntel) or 2 (WheaCpuVendorAmd). Then, the bit

10 Analyzing the Windows kernel shadow stack mitigation

23 of CR4 register is set. This bit is labeled as CR4.CET [8], and therefore
enable Control-flow Enforcement Technology. Finally, the global vari-
able KiUserCetAllowed is set to 1, meaning that user mode applications,
running at CPL3, can benefit from the shadow stack mitigation.

Kernel shadow stack initialization: Since the shadow stack mitiga-
tion can also be activated when the CPU executes in kernel mode, the
function KiInitializeKernelShadowStacks is called at boot time, by
KiSystemStartup. This function is responsible for setting global vari-
ables related to Intel CET activation in kernel mode. It takes as a
parameter a pointer to a structure of type _LOADER_PARAMETER_BLOCK.
This structure is initialized by Windows Boot Loader (winload.exe),
during the boot process, and passed to ntoskrnl later on [4]. This
structure contains a field named Extension, which is a pointer
to a structure of type _LOADER_PARAMETER_EXTENSION. The function
KiInitializeKernelShadowStacks tests the value of the bit CR4.CET

as well as 2 bits from an anonymous bitfield located in this structure:

Listing 4: LOADER_PARAMETER_EXTENSION bitfield

1 /* Bit 14 */

2 unsigned __int32 KernelCetEnabled : 1;

3 /* Bit 18 */

4 unsigned __int32 KernelCetAuditModeEnabled : 1;

These bits are configured regarding the registry keys mentioned earlier
in listing 1 and listing 2 and are used to set 2 global variables:

— KiKernelCetEnabled: The shadow stack mitigation is globally
enabled in kernel mode, a #CP fault generated in kernel is likely
to cause a BSOD.

— KiKernelCetAuditModeEnabled: The shadow stack mitigation is
set in audit mode, the fault handler may generate an Event Tracing

for Windows (ETW) log, and try to fixup the shadow stack to
avoid causing a BSOD.

The value of these 2 global variables can be queried from userland, using
NtQuerySystemInformation, with an undocumented value, as shown in
appendix A. To protect these variables from an arbitrary write in kernel,
they are a stored in a section named CFGRO, which is read only (in the
PTE) but also enforced as read only in the EPTE, thanks to the secure
kernel and SLAT. The value of the variables impacts how the control
protection exception handler will handle the fault (in kernel mode). This
will be described later in section 5 (Fault Handling).

R. Jullian, A. Aulnette 11

When KiInitializeKernelShadowStacks returns to
KiSystemStartup, the MSR IA32_S_CET is written to either
1 (SH_STK_EN) or 3 (SH_STK_EN | WR_SHSTK_EN) if
KernelCetAuditModeEnabled is set:

Listing 5: Writing MSR IA32_S_CET

1 mov eax, 1

2 test cs:KiKernelCetAuditModeEnabled, 1

3 jz short loc_140A8818E

4 or eax, 2

5 loc_140A8818E:

6 xor edx, edx

7 mov ecx, 0x6A2 ; Write MSR IA32_S_CET

8 wrmsr

This allows to enable the shadow stack for the kernel, and also allows
write access to the shadow stack if the audit mode is enabled. Indeed, the
Intel manual [8] describes the MSR IA32_S_CET as following:

— Bit 0, SH_STK_EN : When set to 1, enable shadow stacks at
CPL0

— Bit 1, WR_SHSTK_EN : When set to 1, enables the WRSS-
D/WRSSQ instructions.

Please note that if a kernel debugger is attached during the boot of the
Windows kernel (KdDebuggerEnabled && !KdDebuggerNotPresent), a
call to KdInitSystem will force the bit WR_SHSTK_EN to 1 in the
MSR IA32_S_CET.

4.3 Shadow stack allocation

The Windows kernel uses a structure of type _KTHREAD for each created
thread. The function KeInitThread is responsible for initializing newly
created threads. If KiKernelCetEnabled is set, the bit 22, labeled as
CetKernelShadowStack, is set in the bitfield _KTHREAD.MiscFlags. Then
KiCreateKernelShadowStack is called in order to allocate one page used
to implement the kernel shadow stack. Using MiReservePtes, 3 PTEs
are reserved, however, only one page will be allocated (committed) to
implement the shadow stack . This allows to reserve a virtual address
space of 0x3000 bytes, composed of a first guard page, a page dedicated
to the shadow stack and another guard page.

12 Analyzing the Windows kernel shadow stack mitigation

Fig. 4. Shadow stack virtual address space

Using WinDbg, dumping 3 PTEs returned by
MiAllocateKernelStackPages gives an output like:

1 kd> dq ffffd0d2c5703eb8 L3

2 ffffd0d2c5703eb8 0000000000000000 8a000000041ff161

3 ffffd0d2c5703ec8 0000000000000000

The 2 PTEs used to implement the guard pages are set to 0, meaning
no physical page is used. Any access to these virtual addresses would lead
to a page fault. The PTE associated with the shadow stack page is backed
by a physical page (PageFrameNumber > 0), and is marked as read-only
(Write = 0):

R. Jullian, A. Aulnette 13

1 kd> dt nt!_MMPTE_HARDWARE ffffd0d2c5703eb8+8

2 +0x000 Valid : 0y1

3 +0x000 Dirty1 : 0y0

4 +0x000 Owner : 0y0

5 +0x000 WriteThrough : 0y0

6 +0x000 CacheDisable : 0y0

7 +0x000 Accessed : 0y1

8 +0x000 Dirty : 0y1

9 +0x000 LargePage : 0y0

10 +0x000 Global : 0y1

11 +0x000 CopyOnWrite : 0y0

12 +0x000 Unused : 0y0

13 +0x000 Write : 0y0

14 +0x000 PageFrameNumber :

0y0000000000000000000000000100000111111111 (0x41ff)→֒

15 +0x000 ReservedForSoftware : 0y0000

16 +0x000 WsleAge : 0y1010

17 +0x000 WsleProtection : 0y000

18 +0x000 NoExecute : 0y1

The virtual address covering the range of 0x3000 bytes is then computed
using the virtual address of the first PTE such as:

Listing 6: Virtual address from PTE computation

1 ResolvedVirtualAddress = (

2 (PteAddress - SYSTEM_PTE_BASE_ADDRESS) << 9) |

0xFFFF000000000000→֒

3)

The symbol SYSTEM_PTE_BASE_ADDRESS refers to the 512GB four-level
page table map. Reading the assembly, this is hardcoded to the virtual
address 0xFFFFF68000000000, but its patched at runtime because of
kASLR.

4.4 Secure kernel transition

After allocating the shadow stack, the NT kernel needs to request the
secure kernel to perform 2 additional tasks:

— Initializing the shadow stack
— Protecting the integrity of the shadow stack

These 2 operations are discussed later in section 4.5 and 4.7, but
can be realized thanks to a mechanism named Secure Call. A Se-

cure Call allows the transition from the kernel to the secure kernel.
With VslAllocateKernelShadowStack, the Secure System Call Num-

14 Analyzing the Windows kernel shadow stack mitigation

ber (SSCN), is set to the value 0xE6.3 To perform the secure call,
VslpEnterIumSecureMode is called and ends up in HvlSwitchToVsmVtl1,
which executes a vmcall instruction with the SSCN specified in rax and
rcx set to 0x11:

Listing 7: Transition from VTL 0 to VTL 1

1 kd> u poi(nt!HvlpVsmVtlCallVa)

2 fffff8032e3c000f 488bc1 mov rax,rcx

3 fffff8032e3c0012 48c7c111000000 mov rcx,11h

4 fffff8032e3c0019 0f01c1 vmcall

This allows to perform a hypercall, which causes a VMEXIT in
the hypervisor [4], and thus allows transition from the kernel to the
secure kernel. Therefore the Virtual Secure Mode is switched from
VTL 0 to VTL 1. Hyper-V dispatchs the hypercall and the routine
IumInvokeSecureService is executed in the secure kernel. Readers
interested in more details regarding hypercall are invited to read the
blogpost written by A. Chevalier [2].

In the secure kernel, the routine IumInvokeSecureService dis-
patches the SSCN value and calls the appropriate function. For the
shadow stack, we identified the following secure call exposed by the secure
kernel:

SSCN kernel secure kernel

0xE6 VslAllocateKernelShadowStack SkmmCreateNtKernelShadowStack

0xE7 VslFreeKernelShadowStack SkmmDestroyNtKernelShadowStack

0x112 VslKernelShadowStackAssist SkmmNtKernelShadowStackAssist

0xE8 VslResetKernelShadowStack SkmmResetNtKernelShadowStack

Table 3. Secure call related to the shadow stack (Windows 24H2)

4.5 Shadow stack initialization

Now that we introduced the notion of secure call, let’s dive
into the shadow stack initialization by the secure kernel. As we
saw previously, the shadow stack is read only for the NT ker-
nel. Thus, the NT kernel needs to request the secure kernel

3 SSCN are likely to change (e.g for VslAllocateKernelShadowStack it is 0xE3 on a
23H2 build but it is 0xE6 on a 24H2 build)

R. Jullian, A. Aulnette 15

for the shadow stack initialization. VslAllocateKernelShadowStack

ends up in SkmmCreateNtKernelShadowStack. This function calls
SkmiInitializeNtKernelShadowStack which is responsible for the
shadow stack initialization. This function writes a shadow stack token
as well as the address of a start thread routine. The goal is to allow a
shadow-stack context switch, when the newly created thread is going to
execute. According to the intel manual [8], a shadow token is a 64 bit
value composed of:

— Bit 0: Mode bit. If 1, then this shadow stack restore token can be
used with a rstorssp instruction in 64-bit mode

— Bit 1: Reserved. Must be zero.
— Bit 63:2: Value of shadow stack pointer when this restore point

was created.

One can observe the impact of
SkmiInitializeNtKernelShadowStack, by dumping the shadow-
stack content in the kernel, once the VslAllocateKernelShadowStack

routine returns. Please note that at the time, the new thread has
not started its execution, and the type of kernel shadow stack was
KernelShadowStackTypeKernelThread for this call:

Listing 8: Shadow stack content after
SkmiInitializeNtKernelShadowStack

1 kd> dps ffffa58ae0bcb000+0x2000-0x20 L?5

2 ffffa58ae0bccfe0 0000000000000000 # not yet accessed

3 ffffa58ae0bccfe8 ffffa58ae0bccff1 # shadow stack token

4 ffffa58ae0bccff0 fffff8050b417670 nt!KiStartSystemThread

5 ffffa58ae0bccff8 0000000000000000

6 ffffa58ae0bcd000 ???????????????? # start of second guard page

The shadow-stack token, 0xffffa58ae0bccff1 has its mode bit set,
thus it can be used by a rstorssp instruction. Once the lowest two
bits cleared, it gives the address 0xffffa58ae0bccff0. This will be the
value of the SSP after execution of the rstorssp instruction, which
consumes the shadow stack token and sets the new SSP value. At that
time, the SSP will thus points on a 64 bits value which is the address of the
function nt!KiStartSystemThread. According to the type of shadow stack
requested, it can be another function. Indeed, the secure kernel gets the
address of the start routines from a table named SkmmNtFunctionTable.

16 Analyzing the Windows kernel shadow stack mitigation

4.6 _KTHREAD structure initialization

In Windows 11 21H2 (2022 Update), the _KTHREAD structure has been
updated in order to add the following fields, introducing the support of
the kernel shadow stack:

Listing 9: New fields in the _KTHREAD structure

1 // Offset 0x408

2 void *KernelShadowStack;

3 void *KernelShadowStackInitial;

4 void *KernelShadowStackBase;

5 _KERNEL_SHADOW_STACK_LIMIT KernelShadowStackLimit;

As explained previously, when returning from
VslAllocateKernelShadowStack, the shadow stack of the new
kernel thread has been initialized by the secure kernel. The KeInitThread

function can then update the shadow stack related fields, as shown in the
code snippet below. The field which we named as pShadowStackUpdated

has been computed by the secure kernel, to decrement the SSP value, each
time a value was written in the shadow stack, during its initialization:

1 // Points on the Shadow stack token

2 pkthread->KernelShadowStack = pKernelShadowStackUpdated;

3

4 // Points on the start routine (such as nt!KiStartSystemThread)

5 pkthread->KernelShadowStackInitial = pKernelShadowStackUpdated + 8;

6

7 // Points at the top of the guard page above the shadow stack

8 pkthread->KernelShadowStackBase = pKernelShadowStackBase;

9

10 // _KERNEL_SHADOW_STACK_LIMIT

11 // Bits 0:2 (3 lowers bits) are used to set ShadowStackType (enum

_KERNEL_SHADOW_STACK_TYPE)→֒

12 // Bits 3:11 are unused

13 // Bits 12:63 are used to set ShadowStackLimitPfn (52 bits)

14 pkthread->KernelShadowStackLimit.AllFields = (unsigned int)ShadowStackType

15 | pkthread->KernelShadowStackLimit.AllFields & 0xFF8

16 | (pKernelShadowStackBase - 0x3000) & 0xFFFFFFFFFFFFF000uLL;

Figure 5 bellow illustrates the layout of the shadow stack once the
KeInitThread function returns.

R. Jullian, A. Aulnette 17

Fig. 5. Shadow stack layout after KeInitThread execution

4.7 Shadow stack protection

In section 4.5, we mentioned the role of
SkmmCreateNtKernelShadowStack. This function is also responsi-
ble for protecting the shadow stack integrity. Indeed, once the shadow
stack is allocated, the secure kernel is used to protect its integrity from
a write primitive in VTL 0. Indeed, an attacker could try to make the
shadow stack writable, by modifying the PTE to flip the Write bit. The
goal here is not to protect the PTE itself (it is writable by design) but
rather set the appropriate bits in the EPT, so that an EPT violation
would occur on an illegal write tentative on the shadow stack (even if the

18 Analyzing the Windows kernel shadow stack mitigation

PTE would mark the page as writable). As explained previously, in VTL
0, the shadow stack is read only and only instructions such as call or
wrssq (in audit mode) are allowed to write into the shadow stack.

To enforce this ready only permission, the secure kernel uses a function
named SkmiProtectSinglePage. This function uses ShvlpProtectPages

which initiates a hypercall number 0xC. This hypercall is mentioned
as HvCallModifyVtlProtectionMask in the top-level functional spec-
ification (TLFS) of the Microsoft hypervisor [14], and is also officially
documented by Microsoft:

Listing 10: Definition of HvModifyVtlProtectionMask

1 HV_STATUS

2 HvModifyVtlProtectionMask(

3 _In_ HV_PARTITION_ID TargetPartitionId,

4 _In_ HV_MAP_GPA_FLAGS MapFlags,

5 _In_ HV_INPUT_VTL TargetVtl,

6 _In_reads(PageCount) HV_GPA_PAGE_NUMBER GpaPageList

7);

Unlike for the NT kernel or the secure kernel, Microsoft does not
release a PDB file regarding hvix64.exe.4 In 2019, A. Ionescu released
an (unofficial) Hyper-V Development Kit header file [9], based on a file
named HvGdk.h. This file was shipped once, with the Windows Driver
Kit for Windows 7. This allows to partially understand the permissions
behind HV_MAP_GPA_FLAGS:

Listing 11: Access flag to a GPA

1 //

2 // Flags to describe the access a partition has to a GPA page.

3 //

4 typedef UINT32 HV_MAP_GPA_FLAGS;

5

6 #define HV_MAP_GPA_READABLE (0x00000001)

7 #define HV_MAP_GPA_WRITABLE (0x00000002)

8 #define HV_MAP_GPA_EXECUTABLE (0x00000004)

When SkmiProtectSinglePage is called, the index 0x3 is used
to retrieve the MapFlags from an array named SkmiVtlPageAccess.
This results in the value 0x11, which could be decomposed as
HV_MAP_GPA_READABLE | 0x10. First, one can notice that the page will

4 The Hypervisor Interface for Intel (x64)

R. Jullian, A. Aulnette 19

not be writable as the bit HV_MAP_GPA_WRITABLE is not set. Then the bit
related to the value 0x10 is probably used to specify that this page is a
shadow stack page. It is probably used, to configure the EPTE in order
to set the bit 60 in the EPTE. Indeed, the bit 60 in an EPT Page-Table
entry is described in the intel manual [8] as the supervisor shadow stack’s
bit. Instructions such as rstorssp use this bit to check whether the page
backing the shadow stack is legitimate and not a simple writable page
that an attacker could have allocated with abitrary execution in VTL 0.
Please note that we did not verify this statement by debugging hvix64.exe,
thus we may have missed some details. However, this is something that
we would like to do in a near future.

5 Fault handling

In this section we will describe how the control protection exception
(#CP) handler, KiControlProtectionFault, handles a shadow stack
related fault. This handler is called if a fault is generated by a userland
process (CPL3), or by a kernel thread (CPL0). As explained in the intel
manual [8], when an interruption occurs, without privilege-level change
(i.e when the fault is generated by a kernel thread) three values are pushed
on the shadow stack (this is not specific to a #CP fault):

Fig. 6. Shadow stack usage during interrupted procedure from [8]

These value are documented in the Intel manual [8] such as:
— tempSsCS: Value of the code segment (i.e 0x10 if the fault was

generated by a kernel thread)

20 Analyzing the Windows kernel shadow stack mitigation

— tempSsLIP: Value of the instruction pointer when the fault was
generated

— tempSSP: Value of the SSP when the fault was generated

Figure 7 illustrates the layout of the stack and shadow-stack, when a
#CP fault is generated. In this example, the call stack is composed of few
functions labeled functionA to functionE. The return address consumed
when functionE ends, has been overridden and does not matches with
functionD+0x10. Thus, a #CP fault is raised by the CPU.

Fig. 7. Shadow stack layout after a #CP fault

R. Jullian, A. Aulnette 21

In a similar way, the stack from the thread in which the interrup-
tion occurs, is used by the interruption handler. Therefore, the function
KiControlProtectionFault setup a KTRAP_FRAME structure on its stack-
frame. This is a kernel mode data structure used to save the processor’s
state during exceptions or interrupts. It captures the state of the CPU
registers when a transition from user mode to kernel mode occurs due to
events like system calls, page faults, or hardware interrupts. A pointer
to this structure is passed to the function KiProcessControlProtection.
This function checks the code segment field KTRAP_FRAME.SegCs in order
to check whether the fault is generated by a userland process or a kernel
thread. If the code segment field equals 0x10 (CPL is 0), the function
KiProcessControlProtectionFromKernelMode is called. Otherwise, if
the code segment field equals 0x33 (CPL is 3), the fault is handled directly
within the KiProcessControlProtection function (may be a function
like KiProcessControlProtectionFromUserMode exists and has been in-
lined). In [24], faults resulting from user mode have been reviewed. Here,
we will focus on faults generated in kernel mode and therefore review
the implementation of KiProcessControlProtectionFromKernelMode.
In section 5.1, we will explain how the fault is handled if the shadow stack
is in non-audit mode whereas in section 5.2 we will describe the fault
handling in audit mode.

5.1 Non-Audit mode

First, the faulty return address is read by dereferencing the field
KTRAP_FRAME.Rsp, which points on the top of the stack-frame which
caused the fault. Then a call to KiGetCurrentKernelShadowStackBounds

is made to get the shadow stack boundaries. A loop is then made, starting
from the pointer KTRAP_FRAME.ShadowStackFrame + 0x20 up to the bot-
tom of the shadow stack pointer boundary. The value 0x20 allows to skip
tempSsCS, tempSsLIP, tempSSP and the return address on the shadow
stack which generated the fault. At each iteration, a test is made to check
if the faulty return address matches. If the faulty return address is found,
the shadow stack can be fixed. This is highlighted in figure 7 where the
faulty return address is present in the shadow stack.

A call to VslKernelShadowStackAssist allows to perform a
Secure System Call which writes into the shadow stack and
thus allows to fix it. In that context, the secure kernel exe-
cutes SkmmNtKernelShadowStackAssist with a parameter allowing
to execute SkmiNtKssAssistCpPopSsp. Then, 2 callbacks are ex-
ecuted consecutively: SkmiNtKssAssistCpPopSspValidationCallback

22 Analyzing the Windows kernel shadow stack mitigation

and SkmiNtKssAssistCpPopSspOperationCallback. The second one
fixes the pointer tempSSP so that it points higher on the shadow stack,
precisely at the location where the faulty return address was identi-
fied during the loop. It also nullifies on the shadow stack, the return
address which caused the fault. This simply allows, when the interrup-
tion handler routine ends, to restore the SSP with a modified tempSSP

which now points on 64-bit value which is a valid return address (it
is the same as the one present at the thread’s top of stack). Then,
KiProcessControlProtectionFromKernelMode returns with the value
0x1 and the function KiControlProtectionFault ends its execution with
a iretq instruction, to restore the processor’s state after handling the
exception. In this case, no BSOD is raised.

However, if the faulty return address has not been found in
the shadow stack, this means the call stack has been corrupted. If
the global variable KiKernelCetAuditModeEnabled is not set, then
KiProcessControlProtectionFromKernelMode returns the value 2, and
KiControlProtectionFault will call KiFastFailDispatch in order to
trigger a BSOD. Finally, a call to KeBugCheckEx with the code 0x139
(KERNEL_SECURITY_CHECK_FAILURE) is performed. With a kernel debug-
ger attached to the target computer, the following bugcheck analysis could
be observed:

1 2: kd> !analyze -v

2 ***

3 * *

4 * Bugcheck Analysis *

5 * *

6 ***

7

8 KERNEL_SECURITY_CHECK_FAILURE (139)

9 A kernel component has corrupted a critical data structure. The

corruption could potentially allow a malicious user to gain

control of this machine.

→֒

→֒

10 Arguments:

11 Arg1: 0000000000000039, A shadow stack violation has occurred due

to mismatched return addresses on the call stack vs the shadow

stack.

→֒

→֒

12 Arg2: ffffd8840c3ef410, Address of the trap frame for the exception

that caused the BugCheck→֒

13 Arg3: ffffd8840c3ef368, Address of the exception record for the

exception that caused the BugCheck→֒

14 Arg4: 0000000000000000, Reserved

R. Jullian, A. Aulnette 23

The subcode (0x39) has a self-explainatory message: A shadow stack

violation has occurred due to mismatched return addresses on the call

stack vs the shadow stack.

5.2 Audit mode

If the faulty return address has not been found on the shadow
stack and the global variable KiKernelCetAuditModeEnabled

is set, then another path is taken. The function
KiFixupControlProtectionKernelModeReturnMismatch is
called in order to try to fix the shadow stack using
wrssq instructions. If this operation succeeds, the function
KiLogControlProtectionKernelModeReturnMismatch is called in
order to generate an Event Tracing for Windows (ETW) log. A
call to EtwTimLogControlProtectionKernelModeReturnMismatch

allows the generation of the log for a provider named
Microsoft-Windows-Security-Mitigations:

1 result = EtwWriteEx(

2 // {FAE10392-F0AF-4AC0-B8FF-9F4D920C3CDF}

3 EtwSecurityMitigationsRegHandle,

4 &MITIGATION_AUDIT_CONTROL_PROTECTION_KERNEL_MODE_RETURN_MISMATCH,

5 0LL,

6 0,

7 0LL,

8 0LL,

9 0xDu,

10 &UserData);

Then, the function KiProcessControlProtectionFromKernelMode

ends with the return value 1, and no BSOD is raised.

6 Evaluation

As this mitigation is hardware-based, the overhead is very low for the
operating system, because the #CP handler is supposed to be executed
very rarely. Actually only when a try/except statement causes a mismatch
between the return addresses on the call stack vs the shadow stack, or
when a control flow corruption occurs.

The shadow stack mitigation is quite effective to catch exploit relying on
ROP attacks. Indeed, stack-pivoting to control a set of arbitrary gadgets
is not possible anymore, as the first ret instruction will cause a #CP fault.

24 Analyzing the Windows kernel shadow stack mitigation

However, the current implementation in the kernel allows return-
ing to any address on the shadow stack. This was already mentioned by
Y. Shafir in [22]. Theoretically, it is still possible to use gadgets who
allow returning on another address within the shadow stack. In the same
way, JOP gadgets can still be used. First, because they do not modify the
stack and shadow stack, then, because indirect branch tracking mitigation
is not yet supported in the Windows kernel.

Using virtualization mechanims allows implementing this mitiga-
tion in a secure way. For instance, it is not possible to disable Intel
CET by simply switching the CR4.CET bit to 0, because this operation
would immediately be caught by HyperGuard. Also, even with a kernel
read/write primitive, it is not possible to change the PTE of a page
related to the shadow stack, because of HVCI. Writing to the shadow
stack is only limited to few instructions such as call or wrssq. Finally
HVCI also protects the (read-only) CFGRO section, where the global
variables KiKernelCetEnabled and KiKernelCetAuditModeEnabled live.
So without a HVCI bypass, the shadow stack could theoretically not be
disabled or switched to audit mode on a running kernel.

7 Proof of concepts

In order to demonstrate various aspects of the shadow stack mitigation,
a driver has been developed along with a user client. The client and the
driver communicate via IOCTL. These different aspects of the shadow
stack will be illustrated through test cases and described in the current
section, as detailed below:

— Writing to the shadow stack
— Writing to the MSR registers and the CR4 register
— Incrementing the return address
— Skipping the stack frame
— Try/Except path

It must be mentioned that the audit mode is disabled.

7.1 Writing to the shadow stack

This test case is implemented through
IOCTL_WRITE_CURRENT_SHADOW_STACK. The driver function

R. Jullian, A. Aulnette 25

IoctlWriteShadowStack handles this IOCTL. The function at-
tempts to write a value to the shadow stack address, plus an offset.
Altering the shadow stack in this way should result in a crash.

In this test, the value 0x4141414141414141 is written to the address
u8ShadowStack - 0x200. The result is as follows in WinDbg:

1 Entering DispatchDeviceControl

2 Entering IoctlWriteShadowStack

3 Kernel Shadow Stack: FFFFF1807CBA5FB8

4 Reading -> FFFFF1807CBA5DB8 = 0000000000000000

5 Writing -> FFFFF1807CBA5DB8 = 4141414141414141

6

7 KDTARGET: Refreshing KD connection

8

9 *** Fatal System Error: 0x00000050

10 (0xFFFFF1807CBA5DB8,

11 0x0000000000000003,

12 0xFFFFF80268281ADD,

13 0x0000000000000002)

14

15 Driver at fault:

16 *** shadow_stack_driver.sys - Address FFFFF80268281ADD base at

FFFFF80268280000, DateStamp 67e2e14f→֒

Then, the bugcheck analysis:

1 2: kd> !analyze -v

2 ***

3 * *

4 * Bugcheck Analysis *

5 * *

6 ***

7

8 PAGE_FAULT_IN_NONPAGED_AREA (50)

9 Invalid system memory was referenced. This cannot be protected by

try-except.→֒

10 Typically the address is just plain bad or it is pointing at freed

memory.→֒

11 Arguments:

12 Arg1: fffff1807cba5db8, memory referenced.

13 Arg2: 0000000000000003,

14 bit 0 set if the fault was due to a not-present PTE.

15 bit 1 is set if the fault was due to a write, clear if a read.

16 Arg3: fffff80268281add, If non-zero, the instruction address which

referenced the bad memory→֒

17 address.

18 Arg4: 0000000000000002, (reserved)

26 Analyzing the Windows kernel shadow stack mitigation

As expected, a PAGE_FAULT_IN_NONPAGED_AREA error occurs when
attempting a write operation to the memory reference address
0xFFFFF1807CBA5DB8. This is caused by the read-only rights of
the page, which can be illustrated with WinDbg and the address
0xFFFFF1807CBA5DB8:

1 2: kd> !pte FFFFF1807CBA5DB8

2 VA fffff1807cba5db8

3 PXE at FFFFB85C2E170F18 PPE at FFFFB85C2E1E3008 PDE at

FFFFB85C3C601F28 PTE at FFFFB878C03E5D28→֒

4 contains 0A0000088778F863 contains 0A00000887790863 contains

0A000007AFB49863 contains 8A0000015F536161→֒

5 pfn 88778f ---DA--KWEV pfn 887790 ---DA--KWEV pfn 7afb49

---DA--KWEV pfn 15f536 -G-DA--KR-V→֒

Thus, this test case demonstrates that the shadow stack cannot be
rewritten as mentioned in section 4.7.

7.2 Writing to the MSR registers and the CR4 register

This test case is implemented through IOCTL_WRITE_MSR. The driver
function IoctlWriteMsr handles this IOCTL. The function attempts to
write a value into an MSR register. As mentioned in [18], some registers are
monitored for access or modifications. Depending of the register address,
this should result in a crash triggered by HyperGuard.

In this test, the MSR register 0x6a2, which is IA32_S_CET_REGISTER,
is set. Since the targeted machine is currently being debugged, the value
of this register is 3 instead of 1. Therefore, the value set to this MSR
register is 1. The result is as follows in WinDbg:

1 Entering DispatchDeviceControl

2 Entering IoctlWriteMsr

3 Reading MSR[0x06a2] = 0x0000000000000003

4 Writing MSR[0x06a2] = 0x0000000000000001

5 KDTARGET: Refreshing KD connection

6

7 *** Fatal System Error: 0x0000003b

8 (0x00000000C0000096,

9 0xFFFFF800355318FB,

10 0xFFFFE40A43C6EB10,

11 0x0000000000000000)

As expected an exception occurs. According to the bugcheck analysis:

R. Jullian, A. Aulnette 27

1 ***

2 * *

3 * Bugcheck Analysis *

4 * *

5 ***

6

7 SYSTEM_SERVICE_EXCEPTION (3b)

8 An exception happened while executing a system service routine.

9 Arguments:

10 Arg1: 00000000c0000096, Exception code that caused the BugCheck

11 Arg2: fffff8057c9218fb, Address of the instruction which caused the

BugCheck→֒

12 Arg3: ffffe400431c6b10, Address of the context record for the exception

that caused the BugCheck→֒

13 Arg4: 0000000000000000, zero.

14

15 cs=0010 ss=0018 ds=002b es=002b fs=0053 gs=002b

efl=00040246→֒

16 shadow_stack_driver+0x18fb:

17 fffff800`355318fb 0f30 wrmsr

This exception is due to a SYSTEM_SERVICE_EXCEPTION (0x3b), specif-
ically caused by the execution of a privileged instruction, as indicated
by the STATUS_PRIVILEGED_INSTRUCTION (0xc0000096) code. The culprit
instruction is wrmsr, but the code is running in CPL0 as the cs register
shows, and according to [8], the rdmsr and wrmsr instructions are normally
allowed.

With the call stack as follows:

1 2: kd> k

2 # Child-SP RetAddr Call Site

3 00 ffffe400`431c5978 fffff805`d256c432 nt!DbgBreakPointWithStatus

4 01 ffffe400`431c5980 fffff805`d256b95c nt!KiBugCheckDebugBreak+0x12

5 02 ffffe400`431c59e0 fffff805`d24b8c07 nt!KeBugCheck2+0xb2c

6 03 ffffe400`431c6170 fffff805`d2686fe9 nt!KeBugCheckEx+0x107

7 04 ffffe400`431c61b0 fffff805`d268603c nt!KiBugCheckDispatch+0x69

8 05 ffffe400`431c62f0 fffff805`d267c69f nt!KiSystemServiceHandler+0x7c

9 06 ffffe400`431c6330 fffff805`d239dc72

nt!RtlpExecuteHandlerForException+0xf→֒

10 07 ffffe400`431c6360 fffff805`d239edd9 nt!RtlDispatchException+0x2d2

11 08 ffffe400`431c6ae0 fffff805`d2687145 nt!KiDispatchException+0xac9

12 09 ffffe400`431c7210 fffff805`d2681e25 nt!KiExceptionDispatch+0x145

13 0a ffffe400`431c73f0 fffff805`7c9218fb

nt!KiGeneralProtectionFault+0x365→֒

14 0b ffffe400`431c7580 fffff805`7c921231 shadow_stack_driver+0x18fb

15 0c ffffe400`431c75b0 fffff805`d229697e shadow_stack_driver+0x1231

16 0d ffffe400`431c75e0 fffff805`d288a568 nt!IofCallDriver+0xbe

17 0e ffffe400`431c7620 fffff805`d2889400

nt!IopSynchronousServiceTail+0x1c8→֒

18 0f ffffe400`431c76d0 fffff805`d2888aae nt!IopXxxControlFile+0x940

19 10 ffffe400`431c7940 fffff805`d2686655 nt!NtDeviceIoControlFile+0x5e

20 11 ffffe400`431c79b0 00007ffe`94bdeee4 nt!KiSystemServiceCopyEnd+0x25

28 Analyzing the Windows kernel shadow stack mitigation

The function nt!KiGeneralProtectionFault, pointed to by stack
frame number 0x0a, is of interest. It is related to interrupt code 0xd from
the nt!KiInterruptInitTable of the kernel, as shown in figure 8.

Fig. 8. KiGeneralProtectionFault handler

As mentioned earlier, the hypervisor monitors certain MSR registers
and content modifications. When register 0x6a2 is accessed for writing in
order to alter it, the hypervisor raises a general protection fault.

Thus, this test case demonstrates that MSR registers cannot be altered
as discussed in section 6.

Note: The alteration of the CR4 register will not be demonstrated, as
its related mitigation is the same as the one in place for the MSR registers.

7.3 Incrementing the return address

This test case is implemented through IOCTL_INC_RET_ADDR. The
driver function IncRetAddr is called by IoctlIncRetAddr, which handles
this IOCTL. The function simulates an unaligned return address, similar
to how a ROP chain operates. Returning to an address which is not present
in the shadow stack may result in a crash.

The IncRetAddr function alters its return address by incrementing it
by one. The caller function, IoctlIncRetAddr, which calls the IncRetAddr

function in assembly, is shown below:

1 IoctlIncRetAddr proc near

2

3 sub rsp, 28h

4 lea rcx, aEnteringIoctli ; "Entering IoctlIncRetAddr\n"

5 call DbgPrint

6 call IncRetAddr

7 lea rcx, aLeavingIoctlin ; "Leaving IoctlIncRetAddr\n"

8 call DbgPrint

9 xor eax, eax

10 add rsp, 28h

11 retn

12

13 IoctlIncRetAddr endp

R. Jullian, A. Aulnette 29

By incrementing its return address by one, the IncRetAddr function
updates the return address to point from lea rcx, aLeavingIoctinc

to lea ecx, aLeavingIoctinc, which is still a valid instruction. Going
through this IOCTL results in the following in WinDbg:

1 Entering DispatchDeviceControl

2 Entering IoctIncRetAddr

3 Entering IncRetAddr

4 Legitimate return address: FFFFF80362B916E5

5 Incremented return address: FFFFF80362B916E6

6 Leaving IncRetAddr

7 KDTARGET: Refreshing KD connection

8

9 *** Fatal System Error: 0x00000139

10 (0x0000000000000039,

11 0xFFFFF880F1E9F3C0,

12 0xFFFFF880F1E9F318,

13 0x0000000000000000)

As expected an exception occurs. The bugcheck analysis is as follows:

1 2: kd> !analyze -v

2 ***

3 * *

4 * Bugcheck Analysis *

5 * *

6 ***

7

8 KERNEL_SECURITY_CHECK_FAILURE (139)

9 A kernel component has corrupted a critical data structure. The

corruption→֒

10 could potentially allow a malicious user to gain control of this

machine.→֒

11 Arguments:

12 Arg1: 0000000000000039, A shadow stack violation has occurred due

to mismatched return addresses→֒

13 on the call stack vs the shadow stack.

14 Arg2: fffff880f1e9f3c0, Address of the trap frame for the exception

that caused the BugCheck→֒

15 Arg3: fffff880f1e9f318, Address of the exception record for the

exception that caused the BugCheck→֒

16 Arg4: 0000000000000000, Reserved

A KERNEL_SECURITY_CHECK_FAILURE (0x139) is triggered with the
corruption code 0x39. Which indicates that the return address on the
stack mismatches the one from the shadow stack, as intended.

The call stack is as follows:

30 Analyzing the Windows kernel shadow stack mitigation

1 2: kd> k

2 # Child-SP RetAddr Call Site

3 00 fffff880`f1e9e868 fffff803`b936c432 nt!DbgBreakPointWithStatus

4 01 fffff880`f1e9e870 fffff803`b936b95c nt!KiBugCheckDebugBreak+0x12

5 02 fffff880`f1e9e8d0 fffff803`b92b8c07 nt!KeBugCheck2+0xb2c

6 03 fffff880`f1e9f060 fffff803`b9486fe9 nt!KeBugCheckEx+0x107

7 04 fffff880`f1e9f0a0 fffff803`b94875f2 nt!KiBugCheckDispatch+0x69

8 05 fffff880`f1e9f1e0 fffff803`b9484b1f nt!KiFastFailDispatch+0xb2

9 06 fffff880`f1e9f3c0 fffff803`62b92787

nt!KiControlProtectionFault+0x3df→֒

10 07 fffff880`f1e9f558 fffff803`62b916e6 shadow_stack_driver+0x2787

11 08 fffff880`f1e9f560 fffff803`62b911a4 shadow_stack_driver+0x16e6

12 09 fffff880`f1e9f590 fffff803`b909697e shadow_stack_driver+0x11a4

13 0a fffff880`f1e9f5e0 fffff803`b968a568 nt!IofCallDriver+0xbe

14 0b fffff880`f1e9f620 fffff803`b9689400

nt!IopSynchronousServiceTail+0x1c8→֒

15 0c fffff880`f1e9f6d0 fffff803`b9688aae nt!IopXxxControlFile+0x940

16 0d fffff880`f1e9f940 fffff803`b9486655 nt!NtDeviceIoControlFile+0x5e

17 0e fffff880`f1e9f9b0 00007ffd`499beee4 nt!KiSystemServiceCopyEnd+0x25

The function nt!KiControlProtectionFault, pointed to by stack
frame number 0x06, is of interest. It is related to interrupt code 0x15

from the nt!KiInterruptInitTable of the kernel, as mentioned in sec-
tion 4.1. This interrupt handler is called due to a CET fault as discussed
in section 5.1.

Then, the related shadow stack:

1 2: kd> dps @ssp

2 ffffb102`f1e59f78 fffff803`b936c432 nt!KiBugCheckDebugBreak+0x12

3 ffffb102`f1e59f80 fffff803`b936b95c nt!KeBugCheck2+0xb2c

4 ffffb102`f1e59f88 fffff803`b92b8c07 nt!KeBugCheckEx+0x107

5 ffffb102`f1e59f90 fffff803`b9486fe9 nt!KiBugCheckDispatch+0x69

6 ffffb102`f1e59f98 fffff803`b94875f2 nt!KiFastFailDispatch+0xb2

7 ffffb102`f1e59fa0 fffff803`b9484b1f nt!KiControlProtectionFault+0x3df

8 ffffb102`f1e59fa8 ffffb102`f1e59fc0

9 ffffb102`f1e59fb0 fffff803`62b92787 shadow_stack_driver+0x2787

10 ffffb102`f1e59fb8 00000000`00000010

11 ffffb102`f1e59fc0 fffff803`62b916e5 shadow_stack_driver+0x16e5

12 ffffb102`f1e59fc8 fffff803`62b911a4 shadow_stack_driver+0x11a4

13 ffffb102`f1e59fd0 fffff803`b909697e nt!IofCallDriver+0xbe

14 ffffb102`f1e59fd8 fffff803`b968a568 nt!IopSynchronousServiceTail+0x1c8

15 ffffb102`f1e59fe0 fffff803`b9689400 nt!IopXxxControlFile+0x940

16 ffffb102`f1e59fe8 fffff803`b9688aae nt!NtDeviceIoControlFile+0x5e

17 ffffb102`f1e59ff0 fffff803`b9486655 nt!KiSystemServiceCopyEnd+0x25

The faulting return address is located at 0xFFFFB102F1E59FC0,
before the cs (0x10) register, as illustrated in figure 7 of
section 5. During the call to the handler, the function
nt!KiProcessControlProtectionFromKernelMode is reached through
sub-calls, in order to know if the faulty address is located in the shadow

R. Jullian, A. Aulnette 31

stack. Because the addres is not present in the shadow stack, the control
flow falls into the nt!KiFastFailDispatch function.

Thus, this test case demonstrates that the shadow stack mitigation
prevents control flow redirection through ROP chain.

7.4 Skipping the stack frame

This test case is implemented through IOCTL_SKIP_NEXT_FRAME. The
driver function SkipNextFrame is called by IoctlSkipNextFrame, which
handles this IOCTL. The function retrieves the address of a previous stack
frame and set the current rsp register to it. Returning to an address which
is present in the shadow stack may not result in a crash.

The SkipNextFrame function locates the address of its return address
on the stack. It then calls the setRsp assembly function, which updates
the rsp register to point to the return address in IoctlSkipNextFrame.

The result is shown below in WinDbg:

1 Entering DispatchDeviceControl

2 Entering IoctlSkipNextFrame

3 Entering SkipNextFrame

4 Module found: FFFFF8000D770000

5 Leaving IoctlSkipNextFrame

6 Leaving DispatchDeviceControl

Everything seems to be fine. As in the previous test, the function
nt!KiProcessControlProtectionFromKernelMode is reached through
sub-calls, as shown in the following output from WinDbg with a breakpoint
set on it:

1 Entering DispatchDeviceControl

2 Entering IoctlSkipNextFrame

3 Entering SkipNextFrame

4 Module found: FFFFF8027B930000

5 Breakpoint 0 hit

6 nt!KiProcessControlProtectionFromKernelMode:

7 fffff800`75a28b44 4c8bdc mov r11,rsp

With the following call stack:

32 Analyzing the Windows kernel shadow stack mitigation

1 2: kd> k

2 # Child-SP RetAddr Call Site

3 00 ffff960f`fe02f2f8 fffff802`d1a28aa0

nt!KiProcessControlProtectionFromKernelMode→֒

4 01 ffff960f`fe02f300 fffff802`d1c84a96

nt!KiProcessControlProtection+0x330→֒

5 02 ffff960f`fe02f3c0 fffff802`7b933313

nt!KiControlProtectionFault+0x356→֒

6 03 ffff960f`fe02f558 fffff802`7b931ca5 shadow_stack_driver+0x3313

7 04 ffff960f`fe02f560 fffff802`7b9311cb shadow_stack_driver+0x1ca5

8 05 ffff960f`fe02f590 fffff802`d189697e shadow_stack_driver+0x11cb

9 06 ffff960f`fe02f5e0 fffff802`d1e8a568 nt!IofCallDriver+0xbe

10 07 ffff960f`fe02f620 fffff802`d1e89400

nt!IopSynchronousServiceTail+0x1c8→֒

11 08 ffff960f`fe02f6d0 fffff802`d1e88aae nt!IopXxxControlFile+0x940

12 09 ffff960f`fe02f940 fffff802`d1c86655 nt!NtDeviceIoControlFile+0x5e

13 0a ffff960f`fe02f9b0 00007ff8`12ffeee4 nt!KiSystemServiceCopyEnd+0x25

And the shadow stack is as follows:

1 2: kd> dps @ssp

2 ffffcb0b`a80aff90 fffff802`d1a28aa0 nt!KiProcessControlProtection+0x330

3 ffffcb0b`a80aff98 fffff802`d1c84a96 nt!KiControlProtectionFault+0x356

4 ffffcb0b`a80affa0 ffffcb0b`a80affb8

5 ffffcb0b`a80affa8 fffff802`7b933313 shadow_stack_driver+0x3313

6 ffffcb0b`a80affb0 00000000`00000010

7 ffffcb0b`a80affb8 fffff802`7b932fa7 shadow_stack_driver+0x2fa7

8 ffffcb0b`a80affc0 fffff802`7b931ca5 shadow_stack_driver+0x1ca5

9 ffffcb0b`a80affc8 fffff802`7b9311cb shadow_stack_driver+0x11cb

10 ffffcb0b`a80affd0 fffff802`d189697e nt!IofCallDriver+0xbe

11 ffffcb0b`a80affd8 fffff802`d1e8a568 nt!IopSynchronousServiceTail+0x1c8

12 ffffcb0b`a80affe0 fffff802`d1e89400 nt!IopXxxControlFile+0x940

13 ffffcb0b`a80affe8 fffff802`d1e88aae nt!NtDeviceIoControlFile+0x5e

14 ffffcb0b`a80afff0 fffff802`d1c86655 nt!KiSystemServiceCopyEnd+0x25

The faulty instruction is located at shadow_stack_driver+0x3313,
which corresponds to the ret instruction of setRsp. Normally, the
ret instruction returns to shadow_stack_driver+0x2fa7, as expected
by the shadow stack. However, since rsp has been updated to
0xFFFF960FFE02F560, which points to shadow_stack_driver+0x1ca5,
the stack no longer matches the shadow stack. Because the return ad-
dress is still present in the shadow stack, as indicated in section 5.1,
the nt!VslKernelShadowStackAssist function is invoked to correct the
shadow stack and realign it with the current stack.

Thus, this test case demonstrates that it is possible to alter return
addresses in a way that does not break the shadow stack mitigation.

7.5 Try/Except path

This test case is implemented through IOCTL_DIV_INTEGER. The driver
function DivInteger is called by IoctlDivInteger, which handles this

R. Jullian, A. Aulnette 33

IOCTL. As the name suggests, the function performs integer divisions.
Using the try/except mechanism may prevent a crash in the event that
an exception occurs.

It is interesting to note that these keywords refer to __try/__except

through macros. The usage of these keywords is presented by Microsoft in
[16]. The internal mechanism is quite similar to the one in userland, as it
uses the same structures under the hood in both the kernel and userland.
The relevant structures are described in [17].

To trigger an exception, the operation 1 / 0 is performed, raising a
division by zero exception. The result is shown below in WinDbg:

1 Entering DispatchDeviceControl

2 Entering IoctlDivInteger

3 Entering DivInteger

4 _DivZeroFilter

5 A division by zero occurred

6 Leaving IoctlDivInteger

7 IoctlDivInteger failed

8 Leaving DispatchDeviceControl

Due to the try/except block, the crash is avoided. It is important to
note that the call stack during the exception does not match the shadow
stack. To trace the exception caused by the division by zero, a breakpoint is
set at nt!KiDivideErrorFault. This handler is responsible for managing
division by zero exceptions. It is related to interrupt code 0 from the
nt!KiInterruptInitTable of the kernel, as shown figure 9.

Fig. 9. KiDivideErrorFault handler

Once the first breakpoint is hit, a second breakpoint is set at
nt!KeKernelShadowStackRestoreContext+0x4c. This address corre-
sponds to the call to nt!VslKernelShadowStackAssist when the shadow
stack context is restored.

This address represents the end of the
nt!KeKernelShadowStackRestoreContext function, as illustrated
in the snippet below:

34 Analyzing the Windows kernel shadow stack mitigation

1 nt!KeKernelShadowStackRestoreContext+0x4c call

VslKernelShadowStackAssist→֒

2 nt!KeKernelShadowStackRestoreContext+0x51 add rsp, 38h

3 nt!KeKernelShadowStackRestoreContext+0x55 retn

At this breakpoint, the shadow stack appears as follows:

1 fffffa89`ac9d2f60 fffff807`d8eb9ebb nt!RtlRestoreContext+0x21b

2 fffffa89`ac9d2f68 fffff807`d8c5fdb4 nt!RtlUnwindEx+0x374

3 fffffa89`ac9d2f70 fffff807`d8eb8992 nt!_C_specific_handler+0xe2

4 fffffa89`ac9d2f78 fffff807`d907c69f nt!RtlpExecuteHandlerForException+0xf

5 fffffa89`ac9d2f80 fffff807`d8d9dc72 nt!RtlDispatchException+0x2d2

6 fffffa89`ac9d2f88 fffff807`d8d9edd9 nt!KiDispatchException+0xac9

7 fffffa89`ac9d2f90 fffff807`d9087145 nt!KiExceptionDispatch+0x145

8 fffffa89`ac9d2f98 fffff807`d907e44f nt!KiDivideErrorFault+0x34f

9 fffffa89`ac9d2fa0 fffffa89`ac9d2fb8

10 fffffa89`ac9d2fa8 fffff807`82e524d5 shadow_stack_driver+0x24d5

11 fffffa89`ac9d2fb0 00000000`00000010

12 fffffa89`ac9d2fb8 fffff807`82e52549 shadow_stack_driver+0x2549

13 fffffa89`ac9d2fc0 fffff807`82e5167e shadow_stack_driver+0x167e

14 fffffa89`ac9d2fc8 fffff807`82e5140e shadow_stack_driver+0x140e

15 fffffa89`ac9d2fd0 fffff807`d8c9697e nt!IofCallDriver+0xbe

16 fffffa89`ac9d2fd8 fffff807`d928a568 nt!IopSynchronousServiceTail+0x1c8

17 fffffa89`ac9d2fe0 fffff807`d9289400 nt!IopXxxControlFile+0x940

18 fffffa89`ac9d2fe8 fffff807`d9288aae nt!NtDeviceIoControlFile+0x5e

19 fffffa89`ac9d2ff0 fffff807`d9086655 nt!KiSystemServiceCopyEnd+0x25

20 fffffa89`ac9d2ff8 00000000`00000000

Stepping over the call to KeKernelShadowStackRestoreContext re-
sults in the following shadow stack:

1 fffffa89`ac9d2f40 fffff807`d8eb9ebb nt!RtlRestoreContext+0x21b

2 fffffa89`ac9d2f48 fffffa89`ac9d2fc8

3 fffffa89`ac9d2f50 fffff807`82e5169a shadow_stack_driver+0x169a

4 fffffa89`ac9d2f58 00000000`00000010

5 fffffa89`ac9d2f60 00000000`00000000

6 fffffa89`ac9d2f68 fffff807`d8c5fdb4 nt!RtlUnwindEx+0x374

7 fffffa89`ac9d2f70 fffff807`d8eb8992 nt!_C_specific_handler+0xe2

8 fffffa89`ac9d2f78 fffff807`d907c69f nt!RtlpExecuteHandlerForException+0xf

9 fffffa89`ac9d2f80 fffff807`d8d9dc72 nt!RtlDispatchException+0x2d2

10 fffffa89`ac9d2f88 fffff807`d8d9edd9 nt!KiDispatchException+0xac9

11 fffffa89`ac9d2f90 fffff807`d9087145 nt!KiExceptionDispatch+0x145

12 fffffa89`ac9d2f98 fffff807`d907e44f nt!KiDivideErrorFault+0x34f

13 fffffa89`ac9d2fa0 fffffa89`ac9d2fb8

14 fffffa89`ac9d2fa8 fffff807`82e524d5 shadow_stack_driver+0x24d5

15 fffffa89`ac9d2fb0 00000000`00000010

16 fffffa89`ac9d2fb8 fffff807`82e52549 shadow_stack_driver+0x2549

17 fffffa89`ac9d2fc0 fffff807`82e5167e shadow_stack_driver+0x167e

18 fffffa89`ac9d2fc8 fffff807`82e5140e shadow_stack_driver+0x140e

19 fffffa89`ac9d2fd0 fffff807`d8c9697e nt!IofCallDriver+0xbe

20 fffffa89`ac9d2fd8 fffff807`d928a568 nt!IopSynchronousServiceTail+0x1c8

21 fffffa89`ac9d2fe0 fffff807`d9289400 nt!IopXxxControlFile+0x940

22 fffffa89`ac9d2fe8 fffff807`d9288aae nt!NtDeviceIoControlFile+0x5e

23 fffffa89`ac9d2ff0 fffff807`d9086655 nt!KiSystemServiceCopyEnd+0x25

24 fffffa89`ac9d2ff8 00000000`00000000

R. Jullian, A. Aulnette 35

It is important to focus on the start of the shadow stack:

Shadow Stack Space Value Description

fffffa89‘ac9d2f48 fffffa89‘ac9d2fc8 New old SSP

fffffa89‘ac9d2f50 shadow_stack_driver+0x169a
Address of the

except statement

fffffa89‘ac9d2f58 00000000‘00000010 CS

fffffa89‘ac9d2f60 00000000‘00000000
Act as the nullified

return address

Table 4. Live shadow stack description in KiDivideErrorFault handler

Once the iretq instruction of the RtlRestoreContext function is
executed, the shadow stack appears as follows:

1 fffffa89`ac9d2fc8 fffff807`82e5140e shadow_stack_driver+0x140e

2 fffffa89`ac9d2fd0 fffff807`d8c9697e nt!IofCallDriver+0xbe

3 fffffa89`ac9d2fd8 fffff807`d928a568 nt!IopSynchronousServiceTail+0x1c8

4 fffffa89`ac9d2fe0 fffff807`d9289400 nt!IopXxxControlFile+0x940

5 fffffa89`ac9d2fe8 fffff807`d9288aae nt!NtDeviceIoControlFile+0x5e

6 fffffa89`ac9d2ff0 fffff807`d9086655 nt!KiSystemServiceCopyEnd+0x25

7 fffffa89`ac9d2ff8 00000000`00000000

The execution flow then returns to normal execution.

Thus, the try/except mechanism is implemented alongside the shadow
stack mitigation.

References

1. Chong Xu Bing Sun, Jin Liu. How to Survive the Hardware-assisted Control-flow
Integrity Enforcement. Blackhat Asia, 2019. https://i.blackhat.com/asia-

19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-

Control-Flow-Integrity-Enforcement.pdf.

2. Adrien Chevalier. Virtualization Based Security - Part 2: kernel communi-
cations. https://www.amossys.fr/insights/blog-technique/virtualization-

based-security-part2/, 2017.

3. Diane Dubois. Hyntrospect: a fuzzer for Hyper-V devices. SSTIC, 2021.
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/hyntrospect_a_

fuzzer_for_hyper-v_devices/SSTIC2021-Article-hyntrospect_a_fuzzer_

for_hyper-v_devices-dubois.pdf.

4. Allievi et al. Windows Internal 7, Part 2. Microsoft Press, 2022.

5. Yosifovich et al. Windows Internal 7, Part 1. Microsoft Press, 2017.

6. Intel. Control-flow Enforcement Technology Specification. https://kib.kiev.ua/

x86docs/Intel/CET/334525-003.pdf, 2019.

https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://i.blackhat.com/asia-19/Thu-March-28/bh-asia-Sun-How-to-Survive-the-Hardware-Assisted-Control-Flow-Integrity-Enforcement.pdf
https://www.amossys.fr/insights/blog-technique/virtualization-based-security-part2/
https://www.amossys.fr/insights/blog-technique/virtualization-based-security-part2/
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/hyntrospect_a_fuzzer_for_hyper-v_devices/SSTIC2021-Article-hyntrospect_a_fuzzer_for_hyper-v_devices-dubois.pdf
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/hyntrospect_a_fuzzer_for_hyper-v_devices/SSTIC2021-Article-hyntrospect_a_fuzzer_for_hyper-v_devices-dubois.pdf
https://www.sstic.org/media/SSTIC2021/SSTIC-actes/hyntrospect_a_fuzzer_for_hyper-v_devices/SSTIC2021-Article-hyntrospect_a_fuzzer_for_hyper-v_devices-dubois.pdf
https://kib.kiev.ua/x86docs/Intel/CET/334525-003.pdf
https://kib.kiev.ua/x86docs/Intel/CET/334525-003.pdf

36 Analyzing the Windows kernel shadow stack mitigation

7. Intel. A Technical Look at Intel’s Control-flow Enforcement Technology.
https://www.intel.com/content/www/us/en/developer/articles/technical/

technical-look-control-flow-enforcement-technology.html, 2020.

8. Intel. Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4.
https://www.intel.fr/content/www/fr/fr/content-details/782158/intel-

64-and-ia-32-architectures-software-developer-s-manual-combined-

volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html, 2024.

9. Alex Ionescu. hdk – (unofficial) Hyper-V Development Kit. https://github.com/

ionescu007/hdk, 2020.

10. Matt Miller Ken Johnson. Exploit Mitigation Improvements in Windows 8. Black

Hat USA, 2012. https://media.blackhat.com/bh-us-12/Briefings/M_Miller/

BH_US_12_Miller_Exploit_Mitigation_Slides.pdf.

11. Daniel King and Shawn Denbow. Growing Hypervisor 0day with Hyperseed. Offen-

siveCon, 2019. https://github.com/microsoft/MSRC-Security-Research/blob/

master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%

20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf.

12. Connor McGarr. Exploit Development: No Code Execution? No Problem! Living
The Age of VBS, HVCI, and Kernel CFG. https://connormcgarr.github.io/

2022/05/23/hvci.html, 2022.

13. Connor McGarr. Exploit Development: Investigating Kernel Mode Shadow Stacks
on Windows. https://connormcgarr.github.io/2025/02/03/km-shadow-stacks.

html, 2025.

14. Microsoft. Hypervisor Top Level Functional Specification. https://github.com/

MicrosoftDocs/Virtualization-Documentation/blob/main/tlfs/Hypervisor%

20Top%20Level%20Functional%20Specification%20v6.0b.pdf, 2020.

15. Microsoft. NtQuerySystemInformation function (winternl.h). https:

//learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-

ntquerysysteminformation, 2021.

16. Microsoft. try-except statement. https://learn.microsoft.com/en-us/cpp/cpp/

try-except-statement, 2021.

17. Microsoft. x64 exception handling. https://learn.microsoft.com/en-us/cpp/

build/exception-handling-x64, 2022.

18. Microsoft. Virtualization-based Security System Resource Protections.
https://learn.microsoft.com/en-us/windows-hardware/design/device-

experiences/vbs-resource-protections, 2023.

19. Microsoft. Kernel Mode Hardware-enforced Stack Protection. https:

//learn.microsoft.com/en-us/windows-server/security/kernel-mode-

hardware-stack-protection, 2024.

20. Omri Misgav. Running Rootkits Like A Nation-State Hacker. Offensive-

Con, 2022. https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%

20presentations/Omri%20Misgav%20-%20Running%20Rootkits%20Like%20A%

20Nation-State%20Hacker.pdf.

21. Hari Pulapaka. Understanding Hardware-enforced Stack Protection. https:

//techcommunity.microsoft.com/blog/windowsosplatform/understanding-

hardware-enforced-stack-protection/1247815, 2020.

https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.com/content/www/us/en/developer/articles/technical/technical-look-control-flow-enforcement-technology.html
https://www.intel.fr/content/www/fr/fr/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.fr/content/www/fr/fr/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://www.intel.fr/content/www/fr/fr/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html
https://github.com/ionescu007/hdk
https://github.com/ionescu007/hdk
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://media.blackhat.com/bh-us-12/Briefings/M_Miller/BH_US_12_Miller_Exploit_Mitigation_Slides.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://github.com/microsoft/MSRC-Security-Research/blob/master/presentations/2019_02_OffensiveCon/2019_02%20-%20OffensiveCon%20-%20Growing%20Hypervisor%200day%20with%20Hyperseed.pdf
https://connormcgarr.github.io/2022/05/23/hvci.html
https://connormcgarr.github.io/2022/05/23/hvci.html
https://connormcgarr.github.io/2025/02/03/km-shadow-stacks.html
https://connormcgarr.github.io/2025/02/03/km-shadow-stacks.html
https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/main/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/main/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
https://github.com/MicrosoftDocs/Virtualization-Documentation/blob/main/tlfs/Hypervisor%20Top%20Level%20Functional%20Specification%20v6.0b.pdf
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://learn.microsoft.com/en-us/windows/win32/api/winternl/nf-winternl-ntquerysysteminformation
https://learn.microsoft.com/en-us/cpp/cpp/try-except-statement
https://learn.microsoft.com/en-us/cpp/cpp/try-except-statement
https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64
https://learn.microsoft.com/en-us/cpp/build/exception-handling-x64
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/vbs-resource-protections
https://learn.microsoft.com/en-us/windows-hardware/design/device-experiences/vbs-resource-protections
https://learn.microsoft.com/en-us/windows-server/security/kernel-mode-hardware-stack-protection
https://learn.microsoft.com/en-us/windows-server/security/kernel-mode-hardware-stack-protection
https://learn.microsoft.com/en-us/windows-server/security/kernel-mode-hardware-stack-protection
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Omri%20Misgav%20-%20Running%20Rootkits%20Like%20A%20Nation-State%20Hacker.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Omri%20Misgav%20-%20Running%20Rootkits%20Like%20A%20Nation-State%20Hacker.pdf
https://media.defcon.org/DEF%20CON%2030/DEF%20CON%2030%20presentations/Omri%20Misgav%20-%20Running%20Rootkits%20Like%20A%20Nation-State%20Hacker.pdf
https://techcommunity.microsoft.com/blog/windowsosplatform/understanding-hardware-enforced-stack-protection/1247815
https://techcommunity.microsoft.com/blog/windowsosplatform/understanding-hardware-enforced-stack-protection/1247815
https://techcommunity.microsoft.com/blog/windowsosplatform/understanding-hardware-enforced-stack-protection/1247815

R. Jullian, A. Aulnette 37

22. Yarden Shafir. Your Mitigations Are My Opportunities. OffensiveCon, 2023.
https://www.youtube.com/watch?v=YnxGW8Fvqvk.

23. Joe Bialek (MSCR Vulnerabilites & Mitigations Team). The Evolution Of CFI At-
tacks And Defenses. OffensiveCon, 2018. https://github.com/Microsoft/MSRC-

Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%

20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf.

24. Alex Ionescu Yarden Shafir. R.I.P ROP: CET Internals in Windows 20H1. https:

//windows-internals.com/cet-on-windows/, 2020.

A SYSTEM_INFORMATION_CLASS 0xDD

Using system call NtQuerySystemInformation with
SYSTEM_INFORMATION_CLASS value set to 0xDD, the following globals
variables from ntoskrnl can be retreived by a userland program:

— KiCetCapable
— KiUserCetAllowed
— KiKernelCetEnabled
— KiKernelCetAuditModeEnabled

Listing 12: Querying shadow stack status using
NtQuerySystemInformation

1 #include <Windows.h>

2 #include <winternl.h>

3 #include <cstdio>

4

5 int main()

6 {

7 ULONG SystemInformation = 0;

8 ULONG ReturnLength = 0;

9 NTSTATUS status;

10

11 status = NtQuerySystemInformation((SYSTEM_INFORMATION_CLASS) 0xDD,

&SystemInformation, 4, &ReturnLength);→֒

12

13 if (NT_SUCCESS(status))

14 {

15 printf("KiCetCapable = %d\n",

16 (SystemInformation & 1));

17 printf("KiUserCetAllowed = %d\n",

18 (SystemInformation >> 1) & 1);

19 printf("KiKernelCetEnabled = %d\n",

20 (SystemInformation >> 8) & 1);

21 printf("KiKernelCetAuditModeEnabled = %d\n",

22 (SystemInformation >> 9) & 1);

23 }

24 }

At the time of writing, this operation (SYSTEM_INFORMATION_CLASS

value 0xDD) is not documented by Microsoft [15].

https://www.youtube.com/watch?v=YnxGW8Fvqvk
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://github.com/Microsoft/MSRC-Security-Research/blob/master/presentations/2018_02_OffensiveCon/The%20Evolution%20of%20CFI%20Attacks%20and%20Defenses.pdf
https://windows-internals.com/cet-on-windows/
https://windows-internals.com/cet-on-windows/

	Analyzing the Windows kernel shadow stack mitigation

